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Введение

В основу данного учебного пособия положен курс лекций, читаемый авто-
ром студентам магистратуры радиофизического факультета Нижегородского
государственного университета имени Н. И. Лобачевского. Предполагается,
что читатели знакомы хотя бы в общих чертах с курсами теоретической ме-
ханики, электродинамики, физики плазмы и основ вычислительных методов,
а также математическим анализом в части линейной алгебры, векторного и
тензорного анализа, преобразований Фурье и решения дифференциальных
уравнений в частных производных. При этом при написании пособия автор
пытался всюду, где возможно, кратко приводить все необходимые из других
курсов сведения, чтобы при чтении не приходилось обращаться к другим
источникам.

Учебное пособие посвящено проблеме анализа поведения плазмы, то есть
ионизированного газа, в условиях, когда частота столкновений мала и дости-
жение термодинамического равновесия требует значительного времени. Для
описания такой неравновесной динамики принято применять так называе-
мый кинетический подход, в котором предметом описания является функ-
ция распределения, определяющая состояние отдельных частиц в веществе.
Уравнение её эволюции во времени принято называть кинетическим.

Особенностью плазмы является большая роль, которую в её динамике иг-
рают электромагнитные поля, генерируемые частицами самой плазмы. При
этом во многих практически важных случаях поведение плазмы полностью
определяется усреднёнными в статистическом смысле полями, а влиянием
флуктуаций микрополей и, как следствие, столкновениями частиц можно во-
все пренебречь. Соответствующая система кинетических уравнений и урав-
нений электродинамики носит название уравнений Власова — Максвелла.

Несмотря на то, что разработано несколько методов аналитического ре-
шения этой системы, их возможности сильно ограничены, и в большинстве
случаев требуется непосредственное решение системы уравнений численными
методами, поэтому значительная часть пособия посвящена именно их описа-
нию. Тем не менее, ценность аналитических методов заключается в том, что
они развивают физическую интуицию и дают простые модели, позволяющие
анализировать более сложное поведение плазмы, выделяя в нём более про-
стые паттерны.
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Целью пособия не является всеобъемлющее изложение всех аспектов за-
трагиваемых тем. В рамках столь небольшого текста это и невозможно. Вме-
сто этого здесь сделана попытка изложить необходимые основы, которые с
одной стороны позволили бы читателям при необходимости углубиться в за-
интересовавшую тему, а с другой — дали бы необходимый базис для пони-
мания чужих результатов, основанных на описанных в пособии методах и
подходах, их ограничений и приближений. В конце пособия приведён список
литературы, который можно рассматривать как входную точку для более
глубокого изучения затронутых тем.

Неравновесная плазма встречается в широком круге явлений, представля-
ющих как фундаментальный, так и прикладной интерес. Среди них можно
выделить проблему термоядерного синтеза и поведения плазмы при развитии
неустойчивостей в магнитных ловушках и при инерциальном сжатии мише-
ней, проблему взаимодействия космических плазменных потоков с магнито-
сферами планет, проблему взаимодействия интенсивного излучения с веще-
ством, абляции образующейся плазмы, генерации пучков быстрых частиц и
высокоэнергичного излучения.

Автор надеется, что данное пособие откроет для читателей мир совре-
менной физики плазмы и вдохновит на исследование богатого разнообразия
физических эффектов и их взаимовлияния в неравновесной плазме.
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Глава 1

Кинетическое описание плазмы

1.1. Кинетическая модель

Наиболее полным описанием динамики классической системы, состоящей
из большого количества частиц, является решение уравнений движения для
их совокупности, например, в форме второго закона Ньютона:

𝑑𝑟⃗𝑖
𝑑𝑡

= 𝑣⃗𝑖 (1.1)

𝑑𝑝𝑖
𝑑𝑡

≡ 𝑑(𝛾𝑖𝑚𝑖𝑣⃗𝑖)

𝑑𝑡
= 𝑞𝑖

(︂
𝐸⃗ +

1

𝑐

[︁
𝑣⃗𝑖 × 𝐵⃗

]︁)︂
(1.2)

𝛾𝑖 =
1√︁

1−
(︀
𝑣𝑖
𝑐

)︀2 =

√︃
1 +

(︂
𝑝𝑖
𝑚𝑖𝑐

)︂2

(1.3)

Здесь 𝑟⃗𝑖, 𝑣⃗𝑖, 𝑝𝑖, 𝛾𝑖 — радиус-вектор, скорость, импульс и гамма-фактор 𝑖-й ча-
стицы, 𝑚𝑖, 𝑞𝑖 — её масса и заряд, 𝑖 = 1 . . . 𝑁 , 𝑁 — количество частиц, 𝑐 —
скорость света, 𝐸⃗, 𝐵⃗ — напряжённость электрического и индукция магнитно-
го полей. Здесь и далее в рамках пособия при записи уравнений применяется
система СГС. Такая модель носит название модели 𝑁 тел.

Важным свойством системы взаимодействующих зарядов является её га-
мильтоновость, то есть для неё можно ввести функцию Гамильтона, которая
в простейшем случае учёта только электростатических сил имеет вид:

𝐻 =
∑︁
𝑖

√︁
(𝑚𝑖𝑐2)

2 + (𝑝𝑖𝑐)
2 +

∑︁
𝑖̸=𝑗

𝑞𝑖𝑞𝑗
|𝑟⃗𝑖 − 𝑟⃗𝑗|

+
∑︁
𝑖

𝑞𝑖Φвнеш(𝑟⃗𝑖), (1.4)

где Φвнеш — потенциал внешнего электростатического поля.
Уравнения движения тогда можно получить из уравнений Гамильтона:

𝑑𝑟⃗𝑖
𝑑𝑡

=
𝜕𝐻

𝜕𝑝𝑖
(1.5)

𝑑𝑝𝑖
𝑑𝑡

= −𝜕𝐻
𝜕𝑟⃗𝑖

(1.6)
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Последовательное обобщение гамильтонового подхода на случай полно-
стью электродинамического взаимодействия требует, вообще говоря, вклю-
чения в функцию Гамильтона обобщённых координат для полей. Это при-
водит, однако, к значительному усложнению выкладок. При этом основные
выводы в целом остаются теми же, что и в электростатическом случае, по-
этому в рамках данного раздела мы ограничимся им, добавляя магнитное
взаимодействие там, где это не приводит к чрезмерному усложнению.

В кинетической модели система многих тел описывается функцией рас-
пределения. Эта функция в общем случае определена в 6𝑁 -мерном фазовом
пространстве x ≡ {𝑟⃗1, 𝑝1 . . . 𝑟⃗𝑁 , 𝑝𝑁}. По определению функция распределения
𝜌 (𝑡,x) равна плотности вероятности обнаружить систему в фазовом объёме
𝑑x. Отметим, что сам переход к функции распределения не означает автома-
тического перехода к статистическому описанию. В частности, кинетическое
описание будет полностью эквивалентно описанию в модели 𝑁 тел, если за-
дать функцию вероятности в виде суммы дельта-функций:

𝜌 (𝑡,x) =
∑︁
𝑖

𝛿
(︁
𝑟⃗𝑖 − 𝑅⃗𝑖(𝑡)

)︁
𝛿
(︁
𝑝𝑖 − 𝑃𝑖(𝑡)

)︁
, (1.7)

где 𝑅⃗𝑖(𝑡), 𝑃𝑖(𝑡) — положение и импульс 𝑖-й частицы в момент времени 𝑡.
Для гамильтоновых систем функция распределения подчиняется теореме

Лиувилля:
𝑑𝜌

𝑑𝑡
≡ 𝜕𝜌

𝜕𝑡
+
∑︁
𝑖

(︂
𝜕𝜌

𝜕𝑟⃗𝑖

𝑑𝑟⃗𝑖
𝑑𝑡

+
𝜕𝜌

𝜕𝑝𝑖

𝑑𝑝𝑖
𝑑𝑡

)︂
= 0 (1.8)

Или если ввести скобки Пуассона

{𝑓𝑔} ≡
∑︁
𝑖

(︂
𝜕𝑓

𝜕𝑝𝑖

𝜕𝑔

𝜕𝑟⃗𝑖
− 𝜕𝑔

𝜕𝑝𝑖

𝜕𝑓

𝜕𝑟⃗𝑖

)︂
, (1.9)

то уравнение Лиувилля может быть переписано в более компактной форме:

𝜕𝜌

𝜕𝑡
+ {𝐻𝜌} = 0, (1.10)

Функцию распределения можно себе представлять как функцию плотно-
сти абстрактной фазовой жидкости, движущейся в фазовом пространстве.
Теорема Лиувилля, таким образом, утверждает, что фазовая жидкость га-
мильтоновой системы является несжимаемой.

Докажем теорему Лиувилля. Для этого воспользуемся законом сохранения
частиц в дифференциальной форме:

𝜕𝜌

𝜕𝑡
+ div(𝜌v) = 0, (1.11)
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где оператор дивергенции действует в 6N-мерном пространстве, и введена
скорость фазовой жидкости в этом пространстве:

v =
𝑑x

𝑑𝑡
(1.12)

Распишем дивергенцию в явном виде:∑︁
𝑖

(︂
𝜕

𝜕𝑟⃗𝑖

(︂
𝜌
𝑑𝑟⃗𝑖
𝑑𝑡

)︂
+

𝜕

𝜕𝑝𝑖

(︂
𝜌
𝑑𝑝𝑖
𝑑𝑡

)︂)︂
=

=
∑︁
𝑖

(︂
𝜕𝜌

𝜕𝑟⃗𝑖

𝑑𝑟⃗𝑖
𝑑𝑡

+
𝜕𝜌

𝜕𝑝𝑖

𝑑𝑝𝑖
𝑑𝑡

)︂
+ 𝜌

∑︁
𝑖

(︂
𝜕

𝜕𝑟⃗𝑖

(︂
𝑑𝑟⃗𝑖
𝑑𝑡

)︂
+

𝜕

𝜕𝑝𝑖

(︂
𝑑𝑝𝑖
𝑑𝑡

)︂)︂
(1.13)

Распишем второй член получившейся суммы:∑︁
𝑖

(︂
𝜕

𝜕𝑟⃗𝑖

(︂
𝑑𝑟⃗𝑖
𝑑𝑡

)︂
+

𝜕

𝜕𝑝𝑖

(︂
𝑑𝑝𝑖
𝑑𝑡

)︂)︂
=
∑︁
𝑖

(︂
𝜕

𝜕𝑟⃗𝑖

(︂
𝜕𝐻

𝜕𝑝𝑖

)︂
− 𝜕

𝜕𝑝𝑖

(︂
𝜕𝐻

𝜕𝑟⃗𝑖

)︂)︂
= 0 (1.14)

Откуда и следует уравнение Лиувилля.
Описание системы в 6𝑁 -мерном пространстве, однако, является техниче-

ски невозможным для сколь-нибудь больших значений 𝑁 . Поэтому вводят
упрощённое описание через 𝑛-частичные функции распределения (𝑛 ≤ 𝑁).

По определению, 𝑛-частичная функция распределения 𝐹𝑛(𝑡, 𝑟⃗1, 𝑝1, . . . , 𝑟⃗𝑛, 𝑝𝑛)
равна плотности вероятности обнаружить 𝑛 произвольных частиц системы
вблизи точки 6𝑛-мерного пространства {𝑟⃗1, 𝑝1 . . . 𝑟⃗𝑛, 𝑝𝑛}. Таким образом, 𝑛-
частичная функция распределения является интегральной проекцией полной
функции распределения на 6𝑛-мерное подпространство:

𝐹𝑛 ≡
∫︁
𝜌(𝑡, 𝑟⃗1, 𝑝1, . . . , 𝑟⃗𝑁 , 𝑝𝑁)𝑑𝑟⃗𝑛+1𝑑𝑝𝑛+1 . . . 𝑑𝑟⃗𝑁𝑑𝑝𝑁 (1.15)

Из уравнения Лиувилля для электростатической системы заряженных ча-
стиц можно получить следующее уравнение для 𝑛-частичных функций рас-
пределения:

𝜕𝐹𝑛

𝜕𝑡
+ {𝐻𝑛𝐹𝑛} =

𝑛∑︁
𝑖=1

(𝑁 − 𝑛)
𝜕

𝜕𝑝𝑖

∫︁
𝜕Φ𝑖𝑛+1

𝜕𝑟⃗𝑖
𝐹𝑛+1 𝑑𝑟⃗𝑛+1𝑑𝑝𝑛+1, (1.16)

где введён потенциал
Φ𝑖𝑛+1 ≡

𝑞𝑖𝑞𝑛+1

|𝑟⃗𝑖 − 𝑟⃗𝑛+1|
(1.17)

Таким образом, уравнения для 𝑛-частичных функций распределения обра-
зуют цепочку связанных друг с другом уравнений. Число этих уравнений
равно 𝑁 . Полная система таких уравнений полностью эквивалентна уравне-
нию Лиувилля для полной функции распределения и носит название цепочки
уравнений Боголюбова.
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Решение полученной системы сцепленных уравнений технически также
невозможно. Однако она позволяет перейти к приближённому описанию, ос-
нованному на пренебрежении межчастичными корреляциями высокого по-
рядка или на их описании в рамках модельных представлений. В этом слу-
чае описание ограничивается небольшим количеством 𝑛-частичных функций
распределения с малыми 𝑛. В простейшем случае система описывается ис-
ключительно одночастичной функцией распределения, для которой уравне-
ние принимает вид:

𝜕𝐹1

𝜕𝑡
+
𝑝

𝑚

𝜕𝐹1

𝜕𝑟⃗
− 𝑞𝑖

𝑑Φсред

𝑑𝑟⃗

𝜕𝐹1

𝜕𝑝
=
𝑁

𝑉

∫︁
Θ̂12𝐹2 (𝑡, 𝑟⃗, 𝑝, 𝑟⃗2, 𝑝2) 𝑑𝑟⃗2𝑑𝑝2, (1.18)

где

Θ̂12 ≡
𝜕Φ12

𝜕𝑟⃗

𝜕

𝜕𝑝
+
𝜕Φ12

𝜕𝑟⃗2

𝜕

𝜕𝑝2
(1.19)

Правая часть полученного уравнения описывает изменение состояния от-
дельной частицы при учёте её взаимодействия со всеми другими частица-
ми. Физически такое воздействие отвечает двухчастичным столкновениям.
В плазме, однако, столкновениями зачастую можно вовсе пренебречь, тогда
уравнение для одночастичной функции распределения может быть сведено
к уравнению, известному как уравнение Власова. В полностью электродина-
мическом случае оно имеет следующий вид:

𝜕𝑓

𝜕𝑡
+

𝑝

𝛾𝑚

𝜕𝑓

𝜕𝑟⃗
+ 𝑞

(︂
𝐸⃗ +

1

𝛾𝑚𝑐

[︁
𝑝× 𝐵⃗

]︁)︂ 𝜕𝑓
𝜕𝑝

= 0, (1.20)

где введено обозначение 𝑓(𝑡, 𝑟⃗, 𝑝) для одночастичной функции распределения
и

𝛾 =

√︂
1 +

(︁ 𝑝

𝑚𝑐

)︁2
. (1.21)

Поля 𝐸⃗ и 𝐵⃗, фигурирующие в этом уравнении, являются усреднёнными в
статистическом смысле полями, действующими на отдельную частицу. Ак-
куратный анализ показывает, что эти поля совпадают с макроскопическими
полями, входящими в уравнения Максвелла. Таким образом, уравнение Вла-
сова может быть дополнено самосогласованным образом уравнениями для
полей:

1

𝑐

𝜕𝐸⃗

𝜕𝑡
= rot𝐵⃗ − 4𝜋

𝑐
𝑗⃗ (1.22)

1

𝑐

𝜕𝐵⃗

𝜕𝑡
= −rot𝐸⃗ (1.23)

div𝐸⃗ = 4𝜋𝜌 (1.24)

div𝐵⃗ = 0 (1.25)
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в которых плотность тока 𝑗⃗ и плотность заряда 𝜌 определяются движением
и положением всех зарядов, в том числе и составляющих плазму.

1.2. Моменты функции распределения

Рассмотрим плазму, состоящую из электронов и ионов, возможно, несколь-
ких типов. Каждый тип частиц будем описывать своей функцией распределе-
ния 𝑓𝑠. Для этих функций распределения можно ввести моменты, имеющие
ясный физический смысл.

0-й момент представляет собой скаляр и имеет смысл концентрации ча-
стиц:

𝑛𝑠(𝑡, 𝑟⃗) =

∫︁
𝑓𝑠(𝑡, 𝑟⃗, 𝑝)𝑑𝑝 (1.26)

С её помощью можно определить также плотность полного заряда:

𝜌(𝑡, 𝑟⃗) =
∑︁
𝑠

𝑞𝑠𝑛𝑠(𝑡, 𝑟⃗), (1.27)

где 𝑞𝑠 — заряд частицы типа 𝑠.
1-й момент функции распределения является вектором и имеет смысл

плотности импульса

𝑛𝑠𝑃𝑠(𝑡, 𝑟⃗) =

∫︁
𝑝𝑓𝑠(𝑡, 𝑟⃗, 𝑝)𝑑𝑝, (1.28)

с помощью которой можно определить гидродинамический (усреднённый по
частицам) импульс 𝑃𝑠(𝑡, 𝑟⃗). Гидродинамическая скорость определяется похо-
жим образом:

𝑢⃗𝑠(𝑡, 𝑟⃗) =
1

𝑛𝑠(𝑡, 𝑟⃗)

∫︁
𝑝√︀

1 + (𝑝/𝑚𝑠𝑐)2
𝑓𝑠(𝑡, 𝑟⃗, 𝑝)𝑑𝑝, (1.29)

и с ней связана также плотность электрического тока:

𝑗⃗(𝑡, 𝑟⃗) =
∑︁
𝑠

𝑞𝑠𝑛𝑠(𝑡, 𝑟⃗)𝑢⃗𝑠(𝑡, 𝑟⃗) (1.30)

2-й момент функции распределения — это тензор. Физически в нереляти-
вистском случае он представляет собой плотность потока импульса:

Π𝑖𝑗
𝑠 (𝑡, 𝑟⃗) =

1

𝑚𝑠

∫︁
𝑝𝑖𝑝𝑗𝑓𝑠(𝑡, 𝑟⃗, 𝑝)𝑑𝑝, (1.31)

где верхним индексом обозначены компоненты векторов и тензора. Часто
также вводят так называемый тензор давления:

P 𝑖𝑗
𝑠 (𝑡, 𝑟⃗) =

1

𝑚𝑠

∫︁ (︀
𝑝𝑖 − 𝑃 𝑖

𝑠

)︀ (︀
𝑝𝑗 − 𝑃 𝑗

𝑠

)︀
𝑓𝑠(𝑡, 𝑟⃗, 𝑝)𝑑𝑝 (1.32)
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Скалярное давление может быть получено взятием следа от этого тензора:

𝑃𝑠 =
1

3
Tr P̂ ≡ 1

3

3∑︁
𝑖=1

P 𝑖𝑖 ≡ 1

3𝑚𝑠

∫︁ ⃒⃒⃒
𝑝− 𝑃𝑠

⃒⃒⃒2
𝑓𝑠(𝑡, 𝑟⃗, 𝑝)𝑑𝑝 (1.33)

Со 2-м моментом функции распределения связана также плотность внут-
ренней энергии. Для идеальной плазмы можно пренебречь потенциальной
энергией взаимодействия частиц, и тогда для электронов внутренняя энер-
гия будет определяться только их кинетической энергией. В нерелятивист-
ском случае она может быть вычислена следующим образом:

𝑤𝑒 =

∫︁
1

2𝑚𝑒

⃒⃒⃒
𝑝− 𝑃𝑒

⃒⃒⃒2
𝑓𝑒(𝑡, 𝑟⃗, 𝑝)𝑑𝑝 (1.34)

Таким образом, между давлением и внутренней энергией существует связь,
называемая уравнением состояния. Для идеального электронного газа оно
имеет вид, аналогичный идеальному одноатомному газу:

𝑃𝑒 =
2

3
𝑤𝑒 =

2

3
𝑛𝑒

3

2
𝑘𝑇𝑒 = 𝑛𝑒𝑘𝑇𝑒 (1.35)

1.3. Интеграл столкновений

Во многих задачах столкновения хоть и относительно редки, но могут иг-
рать существенную роль. В этом случае в кинетическую модель можно вве-
сти их приближённое описание через некий функционал, зависящий только
от одночастичной функции распределения:

𝑑𝑓𝑠
𝑑𝑡

=
∑︁
𝑝

𝑄(𝑓𝑠, 𝑓𝑝), (1.36)

где функция 𝑄(𝑓𝑠, 𝑓𝑝) носит название интеграла столкновения. Уравнение в
таком виде принято называть уравнением Больцмана.

Конкретный вид интеграла столкновения определяется из физических со-
ображений и использованных приближений. Если столкновения упругие, то
есть сохраняют импульс и энергию, и обусловлены действием центрально-
симметричных сил, то в нерелятивистском пределе в самом общем виде ин-
теграл столкновений может быть записан в виде:

𝑄 ≡ 1

𝑚𝑠

∫︁∫︁
𝐵 (|𝑣⃗𝑠 − 𝑣⃗𝑝| , 𝜗) [𝑓𝑠(𝑝𝑠 + 𝑞⃗)𝑓𝑝(𝑝𝑝 − 𝑞⃗)− 𝑓𝑠(𝑝𝑠)𝑓𝑝(𝑝𝑝)] 𝑑𝑣⃗𝑝𝑑𝑞⃗, (1.37)

где введён угол рассеяния 𝜗, определяемый следующим соотношением:

cos𝜗 =
(𝑣⃗𝑠 − 𝑣⃗𝑝) ·

(︀
𝑣⃗′𝑠 − 𝑣⃗′𝑝

)︀
|𝑣⃗𝑠 − 𝑣⃗𝑝|2

(1.38)
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Функцию 𝐵(𝑣, 𝜗) называют ядром интеграла столкновений. Его вид опреде-
ляется физическим механизмом столкновения. Можно показать, что инте-
грал в таком виде сохраняет число частиц, полный импульс и энергию систе-
мы.

Простейшим приближением для интеграла столкновений является так на-
зываемое 𝜏 -приближение. Оно используется при малых отклонениях от рав-
новесия, при которых возмущения можно линеаризовать. В этом случае инте-
грал также должен быть линеен по функции распределения, и поэтому может
быть представлен в следующем виде:

𝑄(𝑓𝑠, 𝑓𝑝) =
1

𝜏𝑠𝑝
(𝑓𝑠 − 𝑓𝑠0) (1.39)

Параметр 𝜏𝑠𝑝 определяет характерное время релаксации возмущения и, как
правило, по порядку величины равняется обратной частоте столкновений.
Равновесная функция распределения 𝑓𝑠0 представляет собой распределение
Максвелла:

𝑓𝑠0 ∼ exp

(︂
− 𝑝2

2𝑚𝑠𝑘𝑇

)︂
(1.40)

В случае значительных отклонений от равновесия 𝜏 -приближение нару-
шается, и следует использовать более сложные модели релаксации. Одной
из самых распространённых является модель столкновений Ландау. В этой
модели столкновения рассматриваются как рассеяние точечных заряженных
частиц в отсутствии внешних полей. Удобно в этом случае связать ядро ин-
теграла столкновений с дифференциальным сечением рассеяния 𝑑𝜎:

𝐵 (|𝑣⃗𝑠 − 𝑣⃗𝑝| , 𝜗) 𝑑𝑞⃗ = |𝑣⃗𝑠 − 𝑣⃗𝑝| 𝑑𝜎 (|𝑣⃗𝑠 − 𝑣⃗𝑝| , 𝜗) (1.41)

Дифференциальное сечение рассеяния точечного заряда на другом заряде
было получено Резерфордом:

𝑑𝜎(𝑣, 𝜗) =

(︂
𝑞𝑠𝑞𝑝

2𝜇𝑠𝑝𝑣2

)︂2 𝑑𝜔

sin4 𝜗
2

, (1.42)

где 𝑞𝑠, 𝑞𝑝 — электрические заряды сталкивающихся частиц, 𝜇𝑠𝑝 = 𝑚𝑠𝑚𝑝/(𝑚𝑠+
𝑚𝑝) — их приведённая масса, 𝑑𝜔 = sin𝜗𝑑𝜗𝑑𝜙 — единичный телесный угол.

Проблема с ядром в такой форме заключается в том, что при его исполь-
зовании соответствующий интеграл столкновений расходится. К счастью, это
расхождение носит логарифмический характер и может быть обрезано.

Действительно, в плазме взаимодействие частиц обусловлено электроста-
тическими силами, которые носят дальнодействующий характер, то есть спа-
дают по закону ∼ 1

𝑟2 . В случае слабых столкновений (близкой к идеальной
плазмы) кинетическая энергия частиц значительно превышает их энергию
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взаимодействия друг с другом:
𝑞2𝑠
𝑑

≪ 𝑚𝑠𝑣
2
𝑇 , (1.43)

где 𝑣𝑇 ∼
√︀
𝑘𝑇𝑠/𝑚𝑠 — характерная (тепловая) скорость движения частиц,

𝑑 ∼ 𝑛
−1/3
𝑠 — характерное расстояние между ними. Это условие эквивалентно

условию большого числа частиц в сфере с радиусом Дебая 𝑟𝐷, например, для
электронов:

𝑛𝑒𝑟
3
𝐷 ∼ 𝑛𝑒

(︂
𝑇𝑒
𝑒2𝑛𝑒

)︂3/2

=

(︂
𝑇𝑒

𝑒2𝑛
1/3
𝑒

)︂3/2

∼
(︂
𝑚𝑒𝑣

2
𝑇𝑑

𝑒2

)︂3/2

≫ 1 (1.44)

Таким образом, в случае слабых столкновений частица плазмы взаимодей-
ствует сразу с большим количеством частиц. Каждое такое взаимодействие,
однако, изменяет импульс частицы незначительно. Другими словами, столк-
новения происходят в малоугловом приближении. В импульсном простран-
стве это приводит к медленной диффузии частиц. Математически это озна-
чает, что интеграл столкновений может быть записан следующим образом:

𝑑𝑓𝑠
𝑑𝑡

= −∇𝑝𝐼 (1.45)

Выражение для потока импульса 𝐼 было получено Ландау и имеет вид

𝐼𝑖 =
∑︁
𝑗

2𝜋(𝑞𝑠𝑞𝑝)
2𝐿𝐽𝑖𝑗, (1.46)

где

𝐽𝑖𝑗 =

∫︁ (︂
𝑓𝑠
𝜕𝑓𝑝
𝜕𝑝𝑝𝑗

− 𝑓𝑝
𝜕𝑓𝑠
𝜕𝑝𝑠𝑗

)︂
|𝑣⃗𝑠 − 𝑣⃗𝑝|2 𝛿𝑖𝑗 − (𝑣𝑠𝑖 − 𝑣𝑝𝑖)(𝑣𝑠𝑗 − 𝑣𝑝𝑗)

|𝑣⃗𝑠 − 𝑣⃗𝑝|3
𝑑𝑝𝑝 (1.47)

Величина 𝐿 носит название кулоновского логарифма. Он равен

𝐿 = ln

(︂
1

𝜗min

)︂
, (1.48)

где 𝜗min — минимальный угол отклонения частицы при сохранении куло-
новского характера столкновения. Выделяют два предельных случая. Если
неопределённость положения частицы мала, так что её кинетическая энергия
𝐸kin ≪ |𝑞𝑠𝑞𝑝|/𝜆dB и, следовательно, |𝑞𝑠𝑞𝑝| ≫ ℏ𝑣, то есть столкновение носит
классический характер, и экранировка заряда определяется дебаевским ме-
ханизмом, то

𝜗min ∼
|𝑞𝑠𝑞𝑝|
𝜇𝑠𝑝𝑣2𝑟𝐷

, (1.49)

что соответствует максимальному прицельному параметру порядка радиуса
Дебая. В обратном случае максимальный прицельный параметр имеет вели-
чину порядка длины волны де Бройля и получаем:

𝜗min ∼
ℏ

𝜇𝑠𝑝𝑣𝑟𝐷
(1.50)
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1.4. Свойства уравнения Власова

В отсутствии столкновений из закона сохранения частиц аналогично тео-
реме Лиувилля можно доказать, что выполняется:

𝑑𝑓

𝑑𝑡
= 0 (1.51)

Это свойство также называют свойством несжимаемости фазовой жидкости:
плотность фазовой жидкости сохраняется вдоль траекторий частиц. Из него
следует, в частности, так называемый принцип максимума:

0 ≤ 𝑓(𝑟⃗, 𝑝, 𝑡) ≤ max
𝑟⃗,𝑝

𝑓(𝑟⃗, 𝑝, 0) (1.52)

Для функции распределения также справедлив закон сохранения 𝐿𝑝-норм:

𝑑

𝑑𝑡

(︂∫︁
𝑓 𝑝𝑑𝑟⃗𝑑𝑝

)︂
= 0, 𝑝 = 1, 2, . . . (1.53)

В отсутствии внешних полей и при учёте только электростатического вза-
имодействия можно также записать законы сохранения импульса и энергии
в простой форме:

𝑑

𝑑𝑡

∑︁
𝑠

(︂∫︁
𝑝𝑓𝑠𝑑𝑟⃗𝑑𝑝

)︂
= 0 (1.54)

𝑑

𝑑𝑡

∑︁
𝑠

(︂∫︁
(𝛾𝑚𝑠𝑐

2 + 𝑞𝑠Φ(𝑟⃗))𝑓𝑑𝑟⃗𝑑𝑝

)︂
= 0 (1.55)

Уравнение Власова может быть записано также в так называемой дивер-
гентной форме. Для этого рассмотрим его в изначальной форме (далее для
краткости индекс типа частиц опустим):

𝜕𝑓

𝜕𝑡
+

𝑝

𝛾𝑚

𝜕𝑓

𝜕𝑟⃗
+ 𝑞

(︂
𝐸⃗ +

1

𝛾𝑚𝑐

[︁
𝑝× 𝐵⃗

]︁)︂ 𝜕𝑓
𝜕𝑝

= 0 (1.56)

С учётом независимости переменных 𝑟⃗ и 𝑝 имеем:

𝑝

𝛾𝑚

𝜕𝑓

𝜕𝑟⃗
≡ 𝜕

𝜕𝑟⃗

(︂
𝑝

𝛾𝑚
𝑓

)︂
(1.57)

Поскольку поле 𝐸⃗ не зависит от импульса частиц, а для магнитной состав-
ляющей силы выполняется следующее тождество

𝜕

𝜕𝑝

[︂
𝑝

𝛾𝑚𝑐
× 𝐵⃗

]︂
= 0, (1.58)

то имеем также:

𝑞

(︂
𝐸⃗ +

1

𝛾𝑚𝑐

[︁
𝑝× 𝐵⃗

]︁)︂ 𝜕𝑓
𝜕𝑝

≡ 𝜕

𝜕𝑝

[︂
𝑞

(︂
𝐸⃗ +

1

𝛾𝑚𝑐

[︁
𝑝× 𝐵⃗

]︁)︂
𝑓

]︂
(1.59)
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В результате получаем, что уравнение Власова может быть представлено в
виде:

𝜕𝑓

𝜕𝑡
+∇𝑟⃗,𝑝 (A𝑓) = 0, (1.60)

где введён 6-мерный вектор A в пространстве (𝑟⃗, 𝑝):

A =

{︂
𝑝

𝛾𝑚
, 𝑞𝐸⃗ +

𝑞

𝛾𝑚𝑐

[︁
𝑝× 𝐵⃗

]︁}︂
(1.61)

и векторный дифференциальный оператор набла в этом же пространстве:

∇𝑟⃗,𝑝 ≡
{︂
𝜕

𝜕𝑟⃗
,
𝜕

𝜕𝑝

}︂
(1.62)

Уравнение (1.60) называется дивергентной формой уравнения Власова. Фи-
зически она выражает собой в явном виде закон сохранения частиц. При
этом величина A𝑓 имеет смысл потока частиц, а вектор A — смысл скорости
частиц в фазовом пространстве.
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Глава 2

Метод характеристик

2.1. Характеристики и их свойства

Уравнение Власова относится к классу гиперболических уравнений перво-
го порядка, поэтому для его решения можно применить метод характеристик.

Запишем уравнение Власова в следующем виде:

𝜕𝑓

𝜕𝑡
+A · ∇𝑟⃗,𝑝𝑓 = 0, (2.1)

где 6-мерные вектор A и векторный дифференциальный оператор набла ∇𝑟⃗,𝑝

уже были введены выше:

A =

{︂
𝑝

𝛾𝑚
, 𝑞𝐸⃗ +

𝑞

𝛾𝑚𝑐

[︁
𝑝× 𝐵⃗

]︁}︂
(2.2)

∇𝑟⃗,𝑝 ≡
{︂
𝜕

𝜕𝑟⃗
,
𝜕

𝜕𝑝

}︂
(2.3)

В таком виде уравнение Власова представляет собой уравнение переноса (или
адвекции) жидкости с плотностью 𝑓 в 6-мерном фазовом пространстве со
скоростью A.

Характеристиками уравнения называют семейство кривых X(𝑡; 𝑠,x), удо-
влетворяющих уравнению

𝑑X

𝑑𝑡
= A(X, 𝑡) (2.4)

для всех возможных начальных условий в некий момент времени 𝑠:

X(𝑠) = {𝑟⃗, 𝑝} ≡ x (2.5)

Физически характеристики в данном случае отвечают траекториям частиц в
фазовом пространстве.

Для характеристик справедливы следующие утверждения. Во-первых, ха-
рактеристики транзитивны:

X (𝑡3; 𝑡2,X(𝑡2; 𝑡1,x)) = X(𝑡3; 𝑡1,x) (2.6)
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Во-вторых, семейство характеристик порождает взаимно однозначное и
гладкое отображение (диффеоморфизм) фазового пространства само в се-
бя: если y = X(𝑡; 𝑠,x), то x = X(𝑡; 𝑠,y). Физически это свойство связано
с непрерывной и гладкой зависимостью сил, действующих на частицы, от
точки пространства, а также с симметрией законов движения относительно
обращения во времени.

В-третьих, якобиан отображения, порождаемого семейством характери-
стик, равен единице:

𝐽(𝑡; 𝑠) ≡ det(∇xX(𝑡; 𝑠,x)) = 1 (2.7)

Это свойство является следствием бездивергентности фазовых потоков ∇A =
0 и отражает собой всё тот же принцип несжимаемости фазовой жидкости.

Наконец, из несжимаемости фазовой жидкости следует, что её плотность
𝑓 сохраняется вдоль траекторий частиц. Таким образом, зная характеристи-
ки уравнения, можно найти его решение при заданных начальных условиях
𝑓(𝑡 = 0,x) ≡ 𝑓0(x):

𝑓(𝑡,x) = 𝑓0 (X(0; 𝑡,x)) (2.8)

То есть, чтобы получить решение в данный момент времени, надо провести
характеристику из каждой точки фазового пространства обратно во времени
к моменту времени 𝑡 = 0 и посмотреть, чему равнялась функция распреде-
ления на этой характеристике в этот момент времени.

2.2. Пример: свободный одномерный поток

Рассмотрим одномерное движение нерелятивистского газа в отсутствии
как внешних сил, так и сил взаимодействия между частицами газа. В этом
случае кинетическое уравнение сведётся к виду:

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑥
= 0, (2.9)

где 𝑓 ≡ 𝑓(𝑡, 𝑥, 𝑣), 𝑣 — скорость движения частиц газа вдоль оси 𝑥.
Уравнения характеристик будут иметь вид:

𝑑𝑋

𝑑𝑡
= 𝑉 (2.10)

𝑑𝑉

𝑑𝑡
= 0 (2.11)

Решением этой системы уравнений является:

𝑉 (𝑡; 𝑠, 𝑥, 𝑣) = 𝑣 (2.12)
𝑋(𝑡; 𝑠, 𝑥, 𝑣) = 𝑥+ 𝑣(𝑡− 𝑠) (2.13)

18



Рис. 2.1. Эволюция функции распределения одномерного свободного потока

Тогда решение исходного уравнения при заданной функции распределения
𝑓0(𝑥, 𝑣) в момент времени 𝑡 = 0 может быть записано в следующем виде:

𝑓(𝑥, 𝑣, 𝑡) = 𝑓0(𝑥− 𝑣𝑡, 𝑣) (2.14)

Пример такого решения для начальных условий вида

𝑓0(𝑥, 𝑣) = exp

{︂
−
(︁ 𝑥
40

)︁6
−
(︁ 𝑣
10

)︁2}︂
(2.15)

приведён на Рис. 2.1.

2.3. Пример: электронный пучок вблизи нуля линейно
нарастающего поля

Рассмотрим теперь другой пример задачи, решаемой методом характери-
стик. Пусть имеется пучок нерелятивистских электронов во внешнем элек-
трическом поле, при этом поле линейно нарастает и электроны находятся
вблизи точки, в которой поле пересекает нуль. Будем также пренебрегать
взаимодействием между электронами, считая его пренебрежимо малым по
сравнению со внешним полем.

Выбором единиц измерения можем положить массу и заряд электронов
равными единице и представить действующее на них поле в виде

𝐸𝑥 = −𝑥, (2.16)
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тогда уравнение Власова примет вид:

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑥
− 𝑥

𝜕𝑓

𝜕𝑣
= 0 (2.17)

Уравнения характеристик в этом случае имеют следующий вид:

𝑑𝑋

𝑑𝑡
= 𝑉 (2.18)

𝑑𝑉

𝑑𝑡
= −𝑋 (2.19)

Решение этой системы уравнений имеет вид:

𝑉 (𝑡; 𝑠, 𝑥, 𝑣) = 𝑣 cos(𝑡− 𝑠)− 𝑥 sin(𝑡− 𝑠) (2.20)
𝑋(𝑡; 𝑠, 𝑥, 𝑣) = 𝑥 cos(𝑡− 𝑠) + 𝑣 sin(𝑡− 𝑠) (2.21)

То есть траектории движения частиц представляют собой эллипсы в фазовом
пространстве. Это отвечает гармоническим колебаниям вдоль оси 𝑥.

Зная решение уравнений характеристик, можем теперь записать решение
исходного уравнения:

𝑓(𝑥, 𝑣, 𝑡) = 𝑓0(𝑥 cos 𝑡− 𝑣 sin 𝑡, 𝑣 cos 𝑡+ 𝑥 sin 𝑡) (2.22)

На Рис. 2.2 приведён пример решения для начальных условий вида

𝑓0(𝑥, 𝑣) = exp

{︂
−
(︁ 𝑥
40

)︁6
−
(︁ 𝑣
10

)︁2}︂
(2.23)
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Рис. 2.2. Эволюция функции распределения электронного пучка вблизи нуля линейно
нарастающего электрического поля
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Глава 3

Метод интегралов движения

3.1. Общие сведения

Из гамильтоновой механики известно, что в стационарном случае, когда
гамильтониан не зависит явно от времени, траектория движения частицы в 6-
мерном фазовом пространстве однозначно определяется пятью независимы-
ми интегралами движения — первыми интегралами соответствующей систе-
мы Гамильтона. Если эти интегралы движения {ℐ1 (𝑟⃗, 𝑝) ℐ2 (𝑟⃗, 𝑝) . . . ℐ5 (𝑟⃗, 𝑝)}
известны, то поскольку они сохраняются вдоль траекторий частиц, то есть
вдоль характеристик уравнения Власова, то его решение может быть пред-
ставлено как функция этих интегралов:

𝑓 (𝑡, 𝑟⃗, 𝑝) ≡ 𝑔 (ℐ1, ℐ2 . . . ℐ5) (3.1)

При этом уравнение Власова будет удовлетворено при произвольной форме
функции 𝑔.

Особенно эффективен такой способ в случае, когда несколько интегралов
движения можно выписать в аналитическом виде, а от остальных функция
распределения не зависит. Чаще всего в качестве соответствующих интегра-
лов движения выступают аддитивные интегралы, связанные с симметрией
системы: энергия, обобщённый импульс, обобщённый момент импульса.

Если найти все интегралы движения не удаётся, то их использование хоть
и не позволяет найти решение уравнения Власова, однако позволяет умень-
шить число переменных в нём, упростив дальнейший анализ.

3.2. Энергетическая подстановка

Если функция Гамильтона частиц не зависит явно от времени, то вдоль
траектории сохраняется их энергия. В этом случае уравнение Власова мо-
жет быть упрощено так называемой энергетической подстановкой. В случае
одномерного движения в отсутствии магнитных полей и поперечных элек-
трических полей это позволяет полностью исключить уравнение Власова.
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Действительно, в этом случае функция распределения будет зависеть толь-
ко от двух переменных: 𝑓(𝑟⃗, 𝑝) ≡ 𝑓(𝑥, 𝑝𝑥) и введение интеграла движения

𝐻 =
𝑝2𝑥
2𝑚

+ 𝑞𝜑(𝑥), (3.2)

где 𝜑(𝑥) — электростатический потенциал, позволяет подстановкой

𝑓(𝑥, 𝑝𝑥) = 𝑔(𝐻) (3.3)

тождественно удовлетворить уравнению Власова:

𝑝𝑥
𝑚

𝜕𝑓

𝜕𝑥
− 𝑞

𝑑𝜑

𝑑𝑥

𝜕𝑓

𝜕𝑝𝑥
=
𝑝𝑥
𝑚

𝑑𝑔

𝑑𝐻

𝜕𝐻

𝜕𝑥
− 𝑞

𝑑𝜑

𝑑𝑥

𝑑𝑔

𝑑𝐻

𝜕𝐻

𝜕𝑝𝑥
=

=
𝑝𝑥
𝑚

𝑑𝑔

𝑑𝐻
𝑞
𝑑𝜑

𝑑𝑥
− 𝑞

𝑑𝜑

𝑑𝑥

𝑑𝑔

𝑑𝐻

𝑝𝑥
𝑚

= 0 (3.4)

Распределение плазмы в пространстве при этом будет определяться решени-
ем уравнением Пуассона:

𝑑2𝜑

𝑑𝑥2
= −4𝜋

∑︁
𝑠

+∞∫︁
−∞

𝑞𝑠𝑓𝑠(𝑥, 𝑝𝑥)𝑑𝑝𝑥 (3.5)

Или с учётом подстановки:

𝑑2𝜑

𝑑𝑥2
= −4𝜋

∑︁
𝑠

+∞∫︁
−∞

𝑞𝑠𝑔𝑠(𝐻(𝑥, 𝑝𝑥))𝑑𝑝𝑥 (3.6)

В качестве примера рассмотрим полностью ионизированную плазму, за-
нимающую половину пространства 𝑥 ≤ 0. Ионы будем для простоты считать
неподвижными и однократно ионизированными, их концентрация тогда мо-
жет быть записана в виде:

𝑁𝑖(𝑥) = 𝑁𝑖0Θ(−𝑥), (3.7)

где Θ(𝑥) — функция включения:

Θ(𝑥) =

{︃
1 ⇐⇒ 𝑥 ≥ 0

0 ⇐⇒ 𝑥 < 0
(3.8)

Таким образом, уравнение Пуассона может быть переписано в виде:

𝑑2𝜑

𝑑𝑥2
= −4𝜋𝑒

⎛⎝𝑁𝑖(𝑥)−
+∞∫︁

−∞

𝑔(𝐻(𝑥, 𝑝𝑥))𝑑𝑝𝑥

⎞⎠ , (3.9)
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где функция 𝑔(𝐻) определяет распределение по энергиям электронов. Пред-
положим, что это распределение представляет собой одномерное распределе-
ние Максвелла с температурой 𝑇 (выраженной в энергетических единицах):

𝑔(𝐻) =
𝑁𝑒0√
2𝜋𝑚𝑒𝑇

exp

{︂
−𝐻
𝑇

}︂
, (3.10)

где 𝑁𝑒0 — фоновая концентрация электронов в области, где потенциал равен
нулю. Тогда получаем:

𝑑2𝜑

𝑑𝑥2
= −4𝜋𝑒

⎛⎝𝑁𝑖(𝑥)−
+∞∫︁

−∞

𝑁𝑒0√
2𝜋𝑚𝑒𝑇

exp

{︂
− 𝑝2𝑥
2𝑚𝑇

+
𝑒𝜑

𝑇

}︂
𝑑𝑝𝑥

⎞⎠ =

= −4𝜋𝑒

(︂
𝑁𝑖(𝑥)−𝑁𝑒0 exp

{︂
𝑒𝜑

𝑇

}︂)︂
(3.11)

Будем считать, что поле и потенциал спадают к нулю внутри плазмы, так
что 𝑁𝑖0 = 𝑁𝑒0 и введём безразмерные величины

𝜙 =
𝑒𝜑

𝑇
, (3.12)

𝜉 = 𝑥

(︂
4𝜋𝑒2𝑁𝑒0

𝑇

)︂ 1
2

≡ 𝑥

𝑟𝐷
, (3.13)

где 𝑟𝐷 — радиус Дебая. Тогда уравнение сведётся к виду:

𝑑2𝜙

𝑑𝜉2
= 𝑒𝜙 −Θ(−𝑥) (3.14)

Это нелинейное уравнение не имеет аналитического решения, однако оно
может быть решено численно. Если решение найдено, то распределение кон-
центрации электронов в пространстве может быть вычислено следующим об-
разом:

𝑁𝑒(𝑥) =

+∞∫︁
−∞

𝑔(𝐻(𝑥, 𝑝𝑥))𝑑𝑝𝑥 =

+∞∫︁
−∞

𝑁𝑒0√
2𝜋𝑚𝑒𝑇

exp

{︂
− 𝑝2𝑥
2𝑚𝑇

+
𝑒𝜑

𝑇

}︂
𝑑𝑝𝑥 =

= 𝑁𝑒0 exp

{︂
𝑒𝜑

𝑇

}︂
(3.15)

Хотя уравнение (3.14) не поддаётся аналитическому решению, его можно
частично проанализировать без применения численных методов. Рассмотрим
его в области 𝑥 > 0:

𝑑2𝜙

𝑑𝜉2
= 𝑒𝜙 (3.16)
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Обозначим 𝑦 = 𝑑𝜙/𝑑𝜉 и перепишем уравнение в виде системы:

𝑑𝜙

𝑑𝜉
= 𝑦 (3.17)

𝑑𝑦

𝑑𝜉
= 𝑒𝜙 (3.18)

Поделим нижнее уравнение на верхнее и получим:

𝑑𝑦

𝑑𝜙
=
𝑒𝜙

𝑦
(3.19)

𝑦𝑑𝑦 = 𝑒𝜙𝑑𝜙 (3.20)
𝑦2 − 2𝑒𝜙 = 𝐶 (3.21)

Положим константу интегрирования 𝐶 = 0. Это соответствует тому, что в
области где поле 𝐸 = −𝑑𝜑/𝑑𝑥 отсутствует, потенциал устремляется в беско-
нечность: 𝜙→ −∞ при 𝑦 = 0. Тогда:

𝑦2 = 2𝑒𝜙 (3.22)

𝑦± = ±
√
2 exp

{︁𝜙
2

}︁
(3.23)

𝑑𝜙±

𝑑𝜉
= ±

√
2 exp

{︁𝜙
2

}︁
(3.24)

𝑑𝜙±

exp {𝜙/2}
= ±

√
2𝑑𝜉 (3.25)

−2 exp
{︁
−𝜙±

2

}︁
= ±

√
2(𝜉 − 𝜉0) (3.26)

𝜙± = −2 ln

{︂
∓𝜉 − 𝜉0√

2

}︂
(3.27)

Мы получили два решения, одно из которых определено в области 𝜉 > 𝜉0,
а другое — в области 𝜉 < 𝜉0. Поскольку мы ищем решение во всей области
𝜉 > 0, выберем решение 𝜙−.

Таким образом, в области, где ионы отсутствуют, потенциал электронного
газа логарифмически расходится с характерным масштабом порядка деба-
евского радиуса. Концентрация электронов при этом ведёт себя следующим
образом:

𝑁𝑒 = 𝑁𝑒0 exp

{︂
𝑒𝜑

𝑇

}︂
=

2𝑁𝑒0

(𝜉 − 𝜉0)2
(3.28)

То есть концентрация спадает до нуля обратно пропорционально квадрату
расстоянию.

Рассмотрим теперь уравнение (3.14) в области 𝑥 ≤ 0:

𝑑2𝜙

𝑑𝜉2
= 𝑒𝜙 − 1 (3.29)

25



Проинтегрируем его один раз аналогично случаю 𝑥 > 0:

𝑑𝜙

𝑑𝜉
= 𝑦 (3.30)

𝑑𝑦

𝑑𝜉
= 𝑒𝜙 − 1 (3.31)

𝑑𝑦

𝑑𝜙
=
𝑒𝜙 − 1

𝑦
(3.32)

𝑦𝑑𝑦 = (𝑒𝜙 − 1) 𝑑𝜙 (3.33)
𝑦2 − 2𝑒𝜙 + 2𝜙 = 𝐶 (3.34)

В глубине плазмы (𝑥 → −∞) поле и потенциал спадают до нуля: 𝜙 → 0,
𝑦 → 0, следовательно, 𝐶 = −2. Получаем:

𝑑𝜙±

𝑑𝜉
= ±

√
2 (𝑒𝜙± − 𝜙± − 1)

1
2 (3.35)

Решение этого уравнения надо сшить с решением уравнения в области 𝑥 > 0.
Для этого выберем в качестве решения снова 𝜙− и приравняем выражения
для 𝑦2 в точке 𝑥 = 0:

2𝑒𝜙0 = 2 (𝑒𝜙0 − 𝜙0 − 1) , (3.36)

где 𝜙0 ≡ 𝜙(0). Отсюда получаем 𝜙0 = −1. Найдём также значение константы
интегрирования 𝜉0:

𝜙0 = −2 ln

{︂
− 𝜉0√

2

}︂
(3.37)

𝜉0 = −
√
2𝑒−𝜙0/2 = −

√
2𝑒 (3.38)

Значение 𝜙0 следует использовать в качестве граничного условия при числен-
ном решении уравнения (3.35). Результат приведён на Рис. 3.1. Полученное
решение описывает структуру приповерхностного дебаевского слоя, образу-
ющегося в результате разлёта нагретых электронов.

Уравнения, получающиеся в результате энергетической подстановки, од-
нако, имеют одно особенность в случае наличия в плазме потенциальных
ям. Проиллюстрируем этот случай для решения, у которого потенциал име-
ет вид, показанный на Рис. 3.2. В таком потенциале не могут существо-
вать ионы с энергией 𝐸+ < 𝑞𝜙𝑚𝑖𝑛 и электроны с энергией 𝐸− > −𝑒𝜙𝑚𝑎𝑥.
При этом движение ионов с энергией 𝐸+ > 𝑞𝜙𝑚𝑎𝑥 и электронов с энергией
𝐸− < −𝑒𝜙𝑚𝑖𝑛 ничем не ограничено. Для частиц же с промежуточной энергией
𝑞𝜙𝑚𝑖𝑛 ≤ 𝐸+ ≤ 𝑞𝜙𝑚𝑎𝑥 и −𝑒𝜙𝑚𝑖𝑛 < 𝐸− < −𝑒𝜙𝑚𝑎𝑥 существуют две независимые
друг от друга области, в которых они могут находиться. Например, ионы с
энергией 𝐸+ = 𝑞𝜙1 могут или осциллировать между точками поворота 𝑥1 и
𝑥2, в которых их скорость и кинетическая энергия обращаются в нуль, или,
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Рис. 3.1. Решение уравнения (3.14). Сверху приведены распределения потенциала, элек-
трического поля и концентрация электронов и ионов. Снизу приведена функция распре-
деления электронов
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Рис. 3.2. Пример решения с потенциальной ямой, в которой оказываются захваченными
частицы

налетев из области 𝑥 > 𝑥3, отразиться в точке 𝑥3 и улететь обратно. Для
электронов с энергией 𝐸− = −𝑒𝜙1 осцилляции возможны между точками 𝑥2
и 𝑥3, а инфинитное движение — в области (−∞, 𝑥1).

Частицы, совершающие финитные движения внутри потенциальной ямы,
называют захваченными. Их распределение по энергиям в несвязанных друг
с другом областях может быть разным. При этом поскольку поток частиц
осциллирует, то на функцию распределения накладывается только требова-
ние симметричности по импульсам относительно 𝑝𝑥 = 0. Самосогласован-
ные решения такого типа принято называть модами Бернштейна — Грина —
Крускала (БГК). Эти решения могут описывать в том числе и бегущие по-
тенциальные волны: для этого надо построить решение, в котором средняя
скорость плазмы на обеих бесконечностях одинакова и не равна нулю, тогда
в системе отсчёта этого потока решение БГК будет описывать нелинейную
ленгмюровскую волну.

Отметим, что для ленгмюровских волн, вообще говоря, наблюдается эф-
фект затухания Ландау, заключающийся в том, что между полем и части-
цами происходит обмен энергией. В модах БГК, однако, этот эффект в точ-
ности равен нулю благодаря изначальному требованию самосогласованности
решения. По этой причине ленгмюровские волны в максвелловской плазме не
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являются точным решением уравнений Власова, в то время как моды БГК —
являются. В некотором смысле эти моды можно считать предельным резуль-
татом затухания Ландау на временах, когда обмен энергией между частицами
и полем прекращается.

3.3. Нейтральные токовые структуры

Рассмотрим теперь другой пример одномерных структур, в которых име-
ются поперечные токи и самосогласованное с ними магнитное поле. При этом
будем предполагать, что разделение зарядов и электростатическое поле от-
сутствуют. Тогда в стационарном случае функция распределения будет за-
висеть только от 4-х переменных: 𝑓(𝑡, 𝑟⃗, 𝑝) ≡ 𝑓(𝑥, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧), следовательно,
должны существовать 3 интеграла движения. Ими являются энергия 𝐻 и две
поперечные проекции обобщённого импульса частиц 𝑃𝑦, 𝑃𝑧. Таким образом,
получаем:

𝑓(𝑥, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = 𝑔(𝐻,𝑃𝑦, 𝑃𝑧) (3.39)

𝐻 =
1

2𝑚

(︀
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)︀
(3.40)

𝑃𝑦 = 𝑝𝑦 +
𝑞

𝑐
𝐴𝑦 (3.41)

𝑃𝑧 = 𝑝𝑧 +
𝑞

𝑐
𝐴𝑧, (3.42)

где 𝐴𝑦, 𝐴𝑧 — проекции векторного потенциала на соответствующие оси. Рас-
пределение поля и токов в этом случае могут быть получены из теоремы о
циркуляции тока, которая для одномерного распределения векторного потен-
циала имеет вид:

𝑑2𝐴𝑦,𝑧

𝑑𝑥2
=

4𝜋

𝑐
𝑗𝑦,𝑧, (3.43)

где плотность тока:

𝑗𝑦,𝑧(𝑥) = 𝑞

∫︁∫︁∫︁
𝑝𝑦,𝑧
𝑚
𝑓(𝑥, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧)𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 (3.44)

Получившееся уравнение на векторный потенциал принято называть уравне-
нием Грэда — Шафранова.

Рассмотрим одно из частных решений этого уравнения, известное как то-
ковый слой Харриса. Предположим, что токи создаются только электронами
и направлены только вдоль оси 𝑧, тогда 𝐴𝑦 ≡ 0, 𝑃𝑦 ≡ 𝑝𝑦. Будем искать
решение для функции распределения электронов в следующем виде:

𝑔(𝐻, 𝑝𝑦, 𝑃𝑧) = 𝐶 exp

{︂
−𝐻
𝑇

}︂
exp

{︂
𝑃𝑧𝑣

𝑇

}︂
(3.45)
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Выясним физический смысл скорости 𝑣. Для этого распишем выражение для
функции распределения:

𝑓(𝑥, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = 𝐶 exp

{︃
−
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

2𝑚𝑇
+

(𝑝𝑧 − 𝑒𝐴𝑧/𝑐)𝑣

𝑇

}︃
=

= 𝐶 exp

{︃
−
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧 − 2(𝑝𝑧 − 𝑒𝐴𝑧/𝑐)𝑚𝑣

2𝑚𝑇

}︃
=

= 𝐶 exp

{︃
−
𝑝2𝑥 + 𝑝2𝑦 + (𝑝𝑧 −𝑚𝑣)2 − (𝑚𝑣)2 + 2𝑒𝐴𝑧𝑚𝑣/𝑐

2𝑚𝑇

}︃
=

= 𝐶 exp

{︃
−
𝑝2𝑥 + 𝑝2𝑦 + (𝑝𝑧 −𝑚𝑣)2

2𝑚𝑇

}︃
exp

{︂
𝑒𝐴𝑧𝑣

𝑐𝑇

}︂
,

где мы ввели новую нормировочную константу 𝐶 = 𝐶 exp
(︀
−𝑚𝑣2/2𝑇

)︀
. От-

сюда видно, что 𝑣 играет роль средней скорости электронов (гидродинамиче-
ской скорости потока) вдоль оси 𝑧. Пусть в области, где 𝐴𝑧 = 0, концентрация
электронов равна 𝑁𝑒0, вычислим нормировочную константу:

𝑁𝑒0 =

∫︁
𝑓𝑑𝑝 =

+∞∫︁∫︁∫︁
−∞

𝐶 exp

{︃
−
𝑝2𝑥 + 𝑝2𝑦 + (𝑝𝑧 −𝑚𝑣)2

2𝑚𝑇

}︃
𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 =

= 𝐶 (2𝜋𝑚𝑇 )
3
2 , (3.46)

откуда получаем:

𝐶 = 𝐶 exp

(︂
𝑚𝑣2

2𝑇

)︂
=

𝑁𝑒0

(2𝜋𝑚𝑇 )
3
2

exp

(︂
𝑚𝑣2

2𝑇

)︂
(3.47)

Найдём теперь связь плотности тока и векторного потенциала 𝐴𝑧:

𝑗𝑧 = −𝑒
+∞∫︁∫︁∫︁
−∞

𝑝𝑧
𝑚
𝑓(𝑥, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧)𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 =

= −𝑒𝑁𝑒0

𝑚
exp

{︂
𝑒𝐴𝑧𝑣

𝑐𝑇

}︂
𝐼, (3.48)
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где

𝐼 =

+∞∫︁∫︁∫︁
−∞

𝑝𝑧 exp

{︃
−
𝑝2𝑥 + 𝑝2𝑦 + (𝑝𝑧 −𝑚𝑣)2

2𝑚𝑇

}︃
𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧

(2𝜋𝑚𝑇 )
3
2

=

=

+∞∫︁
−∞

𝑝𝑧 exp

{︂
−(𝑝𝑧 −𝑚𝑣)2

2𝑚𝑇

}︂
𝑑𝑝𝑧

(2𝜋𝑚𝑇 )
1
2

=

=

+∞∫︁
−∞

(𝑝𝑧 −𝑚𝑣) exp

{︂
−(𝑝𝑧 −𝑚𝑣)2

2𝑚𝑇

}︂
𝑑(𝑝𝑧 −𝑚𝑣)

(2𝜋𝑚𝑇 )
1
2

+

+𝑚𝑣

+∞∫︁
−∞

exp

{︂
−(𝑝𝑧 −𝑚𝑣)2

2𝑚𝑇

}︂
𝑑(𝑝𝑧 −𝑚𝑣)

(2𝜋𝑚𝑇 )
1
2

= 𝑚𝑣 (3.49)

Здесь учтено, что первый интеграл в последней сумме является антисим-
метричным относительно 𝑝𝑧 −𝑚𝑣 = 0, и следовательно равен нулю. Таким
образом, получаем:

𝑗𝑧 = −𝑒𝑁𝑒0𝑣 exp

{︂
𝑒𝐴𝑧𝑣

𝑐𝑇

}︂
(3.50)

Подставим это выражение в теорему о циркуляции тока и получим уравнение

𝑑2𝐴𝑧

𝑑𝑥2
= −4𝜋𝑒𝑁𝑒0𝑣

𝑐
exp

{︂
𝑒𝐴𝑧𝑣

𝑐𝑇

}︂
(3.51)

Введём безразмерные величины:

𝑎 =
𝑒𝐴𝑧𝑣

𝑐𝑇
(3.52)

𝜉 = 𝑥

(︂
8𝜋𝑒2𝑁𝑒0

𝑇

)︂1/2
𝑣

𝑐
=
𝑥
√
6

𝑑𝑒0

𝑣

𝑣𝑇
, (3.53)

где 𝑑𝑒0 = 𝑐/𝜔𝑝𝑒0 носит название инерционной электронной длины и имеет
смысл глубины плазменного скин-слоя (𝜔𝑝𝑒0 — электронная плазменная ча-
стота), и 𝑣𝑇 =

√︀
3𝑇/𝑚 — тепловая скорость электронов. В безразмерном виде

уравнение принимает вид:
𝑑2𝑎

𝑑𝜉2
= −2𝑒𝑎 (3.54)

Обозначим 𝑦 = 𝑑𝑎/𝑑𝜉 и перепишем это уравнение в виде системы двух урав-
нений 1-го порядка:

𝑑𝑦

𝑑𝜉
= −2𝑒𝑎 (3.55)

𝑑𝑎

𝑑𝜉
= 𝑦 (3.56)
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Поделим верхнее на нижнее и после некоторых преобразований получим:

𝑦𝑑𝑦 = −2𝑒𝑎𝑑𝑎 (3.57)
𝑦2 = −4𝑒𝑎 + 𝐶 (3.58)

Положим 𝐶 = 4, что соответствует тому, что в точке, где магнитное поле
обращается в нуль (𝑦 = 0), векторный потенциал также обращается в нуль
(𝑎 = 0). Получаем:

𝑦2 = 4(1− 𝑒𝑎) (3.59)
𝑑𝑎

𝑑𝜉
= ±2

√︁
(1− 𝑒𝑎) (3.60)

𝑑𝑎√
1− 𝑒𝑎

= ±2𝑑𝜉 (3.61)

Рассмотрим интеграл от правой части:∫︁
𝑑𝑎√
1− 𝑒𝑎

=

∫︁
𝑒−𝑎/2𝑑𝑎√
𝑒−𝑎 − 1

=
[︁
𝑡 = 𝑒−𝑎/2

]︁
=

∫︁ −2𝑑𝑡√
𝑡2 − 1

= [𝑡 = cosh𝑢] =

∫︁
−2𝑑𝑢 = −2𝑢+ 𝐶 = −2arccosh

(︁
𝑒−𝑎/2

)︁
+ 𝐶

Таким образом, получаем:

−2arccosh
(︁
𝑒−𝑎/2

)︁
+ 𝐶 = ±2𝜉 (3.62)

Константа 𝐶 может быть выбрана равной нулю соответствующим выбором
начала отсчёта оси 𝑥, и тогда имеем:

𝑎 = −2 ln cosh 𝜉 (3.63)

Найдём распределение магнитного поля:

𝐵𝑦 = −𝑑𝐴𝑧

𝑑𝑥
= −𝑐𝑇𝑑𝑒0

𝑒𝑣

𝑑𝑎

𝑑𝜉
=
√︀
8𝜋𝑁𝑒0𝑇 tanh 𝜉, (3.64)

распределение плотности тока:

𝑗𝑧 = −𝑒𝑁𝑒0𝑣 exp

{︂
𝑒𝐴𝑧𝑣

𝑐𝑇

}︂
= − 𝑒𝑁𝑒0𝑣

cosh2 𝜉
(3.65)

и распределение концентрации:

𝑁𝑒 =

∫︁
𝑓𝑑𝑝 = 𝑁𝑒0 exp

{︂
𝑒𝐴𝑧𝑣

𝑐𝑇

}︂
=

𝑁𝑒0

cosh2 𝜉
(3.66)

Найденная структура отвечает токовому плазменному слою, разделяющему
области с противоположно направленным магнитным полем. Графический
вид полученного решения приведён на Рис. 3.3.
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Рис. 3.3. Решение уравнения Грэда — Шафранова для токового слоя Харриса. Сверху
приведены распределения векторного потенциала, магнитного поля, плотности тока и кон-
центрации электронов. Снизу приведена функция распределения электронов
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Физический смысл полученного решения заключается в том, что в так на-
зываемой нулевой плоскости, в которой магнитное поле обращается в нуль, в
стационарном случае должно образовываться уплотнение плазмы, такое что-
бы кинетическое давление плазмы уравновешивало бы давление магнитного
поля. Действительно, при |𝑥| ≫ 1 модуль магнитного поля равен:

|𝐵∞
𝑦 | =

√︀
8𝜋𝑁𝑒0𝑇 ,

откуда получаем: (︀
𝐵∞

𝑦

)︀2
8𝜋

= 𝑁𝑒0𝑇,

где слева стоит выражение для магнитного давления на бесконечности, а
справа — выражение для кинетического давления в точке 𝑥 = 0.
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Глава 4

Введение в методы численного решения
кинетических уравнений

4.1. Метод разделения операторов

К сожалению, аналитические методы решения уравнения Власова позво-
ляют изучать лишь узкий класс задач. В общем случае уравнение Власова
приходится решать численно. Главная вычислительная проблема при этом за-
ключается в том, что кинетические уравнения описывают эволюцию функции
в фазовом пространстве, которое имеет шесть измерений. Чтобы частично об-
легчить задачу численного интегрирования часто применяют метод, извест-
ный как метод разделения операторов, позволяющий разбить многомерную
задачу на последовательность одномерных.

Рассмотрим простейший пример, в котором разделение операторов даёт
точный ответ. Пусть имеется уравнение адвекции в двумерном пространстве
с постоянными скоростями:

𝜕𝑓

𝜕𝑡
+ 𝑣𝑥

𝜕𝑓

𝜕𝑥
+ 𝑣𝑦

𝜕𝑓

𝜕𝑦
= 0 (4.1)

Найдём решение методом характеристик. Соответствующие уравнения для
поиска характеристик имеют вид:

𝑑𝑋

𝑑𝑡
= 𝑉𝑥

𝑑𝑉𝑥
𝑑𝑡

= 0

𝑑𝑌

𝑑𝑡
= 𝑉𝑦

𝑑𝑉𝑦
𝑑𝑡

= 0

В силу постоянства скоростей их решение легко находится:

𝑉𝑥(𝑡; 𝑠, 𝑥, 𝑣𝑥, 𝑦, 𝑣𝑦) = 𝑣𝑥

𝑉𝑦(𝑡; 𝑠, 𝑥, 𝑣𝑥, 𝑦, 𝑣𝑦) = 𝑣𝑦

𝑋(𝑡; 𝑠, 𝑥, 𝑣𝑥, 𝑦, 𝑣𝑦) = 𝑥+ 𝑣𝑥(𝑡− 𝑠)

𝑌 (𝑡; 𝑠, 𝑥, 𝑣𝑥, 𝑦, 𝑣𝑦) = 𝑦 + 𝑣𝑦(𝑡− 𝑠)
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И тогда решение исходного уравнения может быть записано в виде:

𝑓(𝑡, 𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦) = 𝑓0 (𝑥− 𝑣𝑥𝑡, 𝑦 − 𝑣𝑦𝑡, 𝑣𝑥, 𝑣𝑦) , (4.2)

где 𝑓0(𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦) — функция распределения в момент времени 𝑡 = 0.
Идея метода разделения операторов заключается в том, чтобы разделить

оператор адвекции 𝐴 = 𝑣𝑥𝜕/𝜕𝑥+ 𝑣𝑦𝜕/𝜕𝑦 на два: 𝐴𝑥 = 𝑣𝑥𝜕/𝜕𝑥 и 𝐴𝑦 = 𝑣𝑦𝜕/𝜕𝑦
и решить два уравнения адвекции последовательно.

Рассмотрим сначала уравнение адвекции вдоль оси 𝑥:

𝜕𝑓

𝜕𝑡
+ 𝑣𝑥

𝜕𝑓

𝜕𝑥
= 0 (4.3)

с начальным условием 𝑓(0, 𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦) = 𝑓0(𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦). Применяя метод ха-
рактеристик, получаем промежуточное решение:

𝑓(𝑡, 𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦) = 𝑓0 (𝑥− 𝑣𝑥𝑡, 𝑦, 𝑣𝑥, 𝑣𝑦) (4.4)

Теперь рассмотрим уравнение адвекции вдоль оси 𝑦:

𝜕𝑓

𝜕𝑡
+ 𝑣𝑦

𝜕𝑓

𝜕𝑦
= 0 (4.5)

с начальным условием, определяемым промежуточным решением 𝑓(0, 𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦) =
𝑓 (𝑡, 𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦). Снова применим метод характеристик и получим окончатель-
ное решение:

𝑓(𝑡, 𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦) = 𝑓 (𝑡, 𝑥, 𝑦 − 𝑣𝑦𝑡, 𝑣𝑥, 𝑣𝑦) = 𝑓0 (𝑥− 𝑣𝑥𝑡, 𝑦 − 𝑣𝑦𝑡, 𝑣𝑥, 𝑣𝑦) (4.6)

Полученный ответ в данном случае совпадает с результатом решения урав-
нения двумерной адвекции. В общем случае это, однако, не так.

Действительно, рассмотрим уравнение вида

𝜕𝑢

𝜕𝑡
=
(︁
𝐴+ 𝐵̂

)︁
𝑢, (4.7)

в котором операторы 𝐴, 𝐵̂ не зависят от времени. Формально его решение
можно записать в виде

𝑢(𝑡+ ℎ) = 𝑒ℎ(𝐴+𝐵̂)𝑢(𝑡) (4.8)

Решение уравнений с разделённым оператором

𝜕𝑢

𝜕𝑡
= 𝐴𝑢 (4.9)

𝜕𝑢

𝜕𝑡
= 𝐵̂𝑢 (4.10)
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тогда можно представить в виде

𝑢(𝑡+ ℎ) = 𝑒ℎ𝐴𝑢(𝑡) (4.11)

𝑢(𝑡+ ℎ) = 𝑒ℎ𝐵̂𝑢(𝑡) (4.12)

Полное решение разделённой системы тогда будет иметь вид

𝑢̃(𝑡+ ℎ) = 𝑒ℎ𝐵̂
(︁
𝑒ℎ𝐴𝑢(𝑡)

)︁
(4.13)

Если операторы 𝐴 и 𝐵̂ коммутируют друг с другом, то приближённое реше-
ние 𝑢̃ будет совпадать с точным. В обратном случае точность аппроксимации
можно оценить следующим образом (ниже 𝐼 — единичный оператор):

𝑒ℎ(𝐴+𝐵̂) − 𝑒ℎ𝐵̂𝑒ℎ𝐴 = 𝐼 + ℎ
(︁
𝐴+ 𝐵̂

)︁
+
ℎ2

2

(︁
𝐴+ 𝐵̂

)︁2
−

−
(︂
𝐼 + ℎ𝐵̂ +

ℎ2

2
𝐵̂2

)︂(︂
𝐼 + ℎ𝐴+

ℎ2

2
𝐴2

)︂
+𝑂

(︀
ℎ3
)︀
=

=
ℎ2

2

(︁
𝐴2 + 𝐵̂2 + 𝐵̂𝐴+ 𝐴𝐵̂

)︁
−

− ℎ2

2

(︁
𝐴2 + 𝐵̂2 + 2𝐵̂𝐴

)︁
+𝑂

(︀
ℎ3
)︀
=

=
ℎ2

2

(︁
𝐴𝐵̂ − 𝐵̂𝐴

)︁
+𝑂

(︀
ℎ3
)︀
, (4.14)

то есть ошибка аппроксимации пропорциональна ℎ2, или другими словами,
метод имеет 1-ый порядок точности.

Точность аппроксимации метода разделения операторов можно повысить,
если использовать так называемую схему разделения Стрэнга, которая мате-
матически может быть представлена следующим образом:

𝑒ℎ(𝐴+𝐵̂) ≈ 𝑒ℎ𝐴/2𝑒ℎ𝐵̂𝑒ℎ𝐴/2 (4.15)

Действительно:

𝑒ℎ𝐴/2𝑒ℎ𝐵̂𝑒ℎ𝐴/2 =

(︂
𝐼 +

ℎ

2
𝐴+

ℎ2

8
𝐴2

)︂(︂
𝐼 + ℎ𝐵̂ +

ℎ2

2
𝐵̂2

)︂
×

×
(︂
𝐼 +

ℎ

2
𝐴+

ℎ2

8
𝐴2

)︂
+𝑂

(︀
ℎ3
)︀
=

= 𝐼 + ℎ
(︁
𝐴+ 𝐵̂

)︁
+
ℎ2

2

(︁
𝐴2 + 𝐵̂2 + 𝐵̂𝐴+ 𝐴𝐵̂

)︁
+𝑂

(︀
ℎ3
)︀

(4.16)

и, таким образом:

𝑒ℎ(𝐴+𝐵̂) − 𝑒ℎ𝐴/2𝑒ℎ𝐵̂𝑒ℎ𝐴/2 ≈ 𝑂
(︀
ℎ3
)︀
, (4.17)
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то есть метод разделения операторов Стрэнга имеет 2-ой порядок точности
аппроксимации.

Метод Стрэнга можно обобщить на случай суммы нескольких операторов.
Если оператор 𝐴 = 𝐴1 + · · ·+ 𝐴𝑛, то

𝑒ℎ𝐴 = 𝑒ℎ𝐴1/2 . . . 𝑒ℎ𝐴𝑛−1/2𝑒ℎ𝐴𝑛𝑒ℎ𝐴𝑛−1/2 . . . 𝑒ℎ𝐴1/2 +𝑂
(︀
ℎ3
)︀

(4.18)

Это позволяет разбивать уравнение адвекции в многомерном пространстве на
цепочку одномерных уравнений. При этом, однако, следует проявлять осто-
рожность, поскольку, вообще говоря, разделённые уравнения не обязательно
обладают теми же свойствами, что и исходное. В частности, они могу не
обладать теми же интегралами движения, то есть могут не удовлетворять
законам сохранения.

4.2. Общие представления об одномерном уравнении пе-
реноса

Поскольку метод разделения операторов позволяет свести задачу модели-
рования многомерного уравнения адвекции, в том числе уравнения Власова,
к моделированию одномерных уравнений, то далее мы рассмотрим числен-
ные методы решения одномерного уравнения адвекции. В общем случае его
можно представить в виде

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑥
= 0 (4.19)

Отметим, что при разделении операторов в нерелятивистском уравнении Вла-
сова в разделённых одномерных уравнениях скорость адвекции 𝑣 не зависит
явным образом от координаты 𝑥 для всех шести измерений. В релятивистском
случае, однако, адвекция вдоль проекций импульсов зависит от соответству-
ющей проекции, например, для 𝑝𝑥 имеем:

𝜕𝑓

𝜕𝑡
+ 𝑞

⎛⎜⎝𝐸𝑥 +
𝑝𝑦𝐵𝑧 − 𝑝𝑧𝐵𝑦√︁

1 +
(︀
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)︀
/(𝑚𝑐)2

⎞⎟⎠ 𝜕𝑓

𝜕𝑝𝑥
= 0 (4.20)

Кроме того, скорость адвекции вдоль проекций импульсов в общем случае
зависит также от времени 𝑡, поскольку электромагнитные поля могут ме-
няться во времени. К вопросу аппроксимации полей в этом случае мы обра-
тимся позднее в разделе, посвящённому их интегрированию, сейчас же будем
считать, что поля можно считать на каждой итерации численной схемы при-
ближённо постоянными, и ограничимся нерелятивистским случаем, так что
скорость адвекции 𝑣 в разделённых уравнениях на каждой итерации можно
считать константой.
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Рис. 4.1. Пример численного решения кинетического уравнения для функции распределе-
ния в непараболической потенциальной яме

Уравнение адвекции относится к уравнениям гиперболического типа. Для
него решается либо начальная задача (задача Коши), когда заданы только на-
чальные условия, а пространство считается неограниченным, или начально-
краевая задача, когда дополнительно также поставлены граничные условия.

Одной из главных вычислительных проблем при решении кинетических
уравнений является то, что в ходе эволюции функция распределения, как
правило, стремится к образованию высокочастотной структуры. В качестве
примера рассмотрим поведение газа в слегка непараболическом потенциале:

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑥
− (𝑥+ 𝜀𝑥3)

𝜕𝑓

𝜕𝑣
= 0 (4.21)

На Рис. 4.1 приведён пример численного решения этого уравнения для зна-
чения параметра 𝜀 = 10−3.

Мы видим, что гладкое изначально распределение через несколько осцил-
ляций становится сильно изрезанным. Такое поведение является характер-
ным для функции распределения. Чтобы сохранять эту изрезанность, мето-
ды, численно интегрирующие уравнение адвекции, должны обладать мини-
мально возможной численной диффузией.
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Среди известных методов решения уравнения адвекции выделим следую-
щие:

• Метод конечных разностей

• Спектральные методы Фурье и Эрмита

• Метод конечных (или контрольных) объёмов

• Полулагранжев метод (метод интегрирования характеристик)

Они будут рассмотрены далее в соответствующих разделах. Для решения
уравнения адвекции можно также применять метод конечных элементов, яв-
ляющийся универсальным методом решения эволюционных уравнений. Кро-
ме того, особняком стоят лагранжевы методы, основанные на решении кине-
тического уравнения в лагранжевых координатах, и методы, основанные на
представлении функции распределения как набора частиц и интегрировании
уравнений движения этих частиц. Метод конечных элементов и лагранже-
вы методы в рамках данного учебного пособия мы рассматривать не будем.
Среди методов, основанных на представлении через частицы, наиболее попу-
лярным является так называемый метод частиц в ячейках — он также будет
рассмотрен далее в соответствующем разделе.
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Глава 5

Метод конечных разностей

5.1. Общие сведения о конечных разностях

Идея метода конечных разностей заключается в аппроксимации производ-
ных, входящих в интегрируемое уравнение, через конечные разности. Для
этого неизвестная функция аппроксимируется значениями в вершинах неко-
торой сетки {𝑥𝑖, 𝑖 = 1 . . . 𝑁} в дискретные моменты времени {𝑡𝑛, 𝑛 = 0, 1 . . . }:

𝑓𝑛𝑖 ≡ 𝑓(𝑡𝑛, 𝑥𝑖) (5.1)

Задача заключается в том, чтобы задав функцию в начальный момент вре-
мени 𝑡0, найти её значение в следующие моменты времени во всех точках
сетки.

Рассмотрим простейшие конечно-разностные аппроксимации производных.
Для простоты будем предполагать, что заданная сетка имеет постоянный шаг
равный 𝑎. Тогда для аппроксимации первой производной можно использовать
центрально-взвешенную схему:

𝑑𝑓(𝑥𝑖)

𝑑𝑥
=
𝑓𝑖+1 − 𝑓𝑖−1

2𝑎
+𝑂(𝑎3), (5.2)

которая имеет 2-ой порядок точности.
С точки зрения уравнения адвекции недостатком такой аппроксимации мо-

жет являться то, что значение производной определяется значением функции
как справа, так и слева от данной точки. В уравнениях адвекции же жид-
кость переносится в одном из двух направлений, и поэтому её значение не
может зависеть от состояния потока ниже по течению: например, если поток
движется слева направо, то на изменение состояния потока в данной точке
не может влиять состояние потока справа от неё. По этой причине часто ис-
пользуются односторонние аппроксимации, называемые также upwind (вверх
по течению):

𝑑𝑓(𝑥𝑖)

𝑑𝑥
=

⎧⎪⎨⎪⎩
𝑓𝑖 − 𝑓𝑖−1

𝑎
+𝑂(𝑎2) ⇐⇒ 𝑣 > 0

𝑓𝑖+1 − 𝑓𝑖
𝑎

+𝑂(𝑎2) ⇐⇒ 𝑣 < 0

(5.3)
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Эта аппроксимация, однако, имеет только 1-ый порядок точности, поэто-
му иногда вместо неё используют также схему аппроксимации upwind 2-го
порядка точности:

𝑑𝑓(𝑥𝑖)

𝑑𝑥
=

⎧⎪⎨⎪⎩
3𝑓𝑖 − 4𝑓𝑖−1 + 𝑓𝑖−2

2𝑎
+𝑂(𝑎3) ⇐⇒ 𝑣 > 0

−𝑓𝑖+2 + 4𝑓𝑖+1 − 3𝑓𝑖
2𝑎

+𝑂(𝑎3) ⇐⇒ 𝑣 < 0

(5.4)

У неё, однако, другая проблема: она становится более нелокальной, требуя
для вычисления производных в точке 𝑥𝑖 значения функции не только в со-
седних точках 𝑥𝑖±1, но и более дальних 𝑥𝑖±2, что может привносить дополни-
тельную численную диффузию.

5.2. Схема интегрирования вперёд по времени, центри-
рованная в пространстве

Простейшей схемой численного интегрирования уравнения переноса яв-
ляется схема Forward in time, centered in space (FTCS, вперёд по времени,
центрированная в пространстве). В ней производная по времени аппрокси-
мируется по методу Эйлера через одностороннюю конечную разность, а для
пространственной производной используется центрально-взвешенная схема:

𝑓𝑛+1
𝑖 − 𝑓𝑛𝑖

ℎ
+ 𝑣

𝑓𝑛𝑖+1 − 𝑓𝑛𝑖−1

2𝑎
= 0 (5.5)

𝑓𝑛+1
𝑖 = 𝑓𝑛𝑖 − 𝑣ℎ

2𝑎
(𝑓𝑛𝑖+1 − 𝑓𝑛𝑖−1) (5.6)

К сожалению, эта схема является неустойчивой при любом выборе пара-
метров. Анализ устойчивости можно провести так называемым методом фон
Неймана, представив решение в виде суммы гармонических волн и рассмот-
рев эволюцию отдельной гармоники:

𝑓𝑛𝑖 = 𝜉𝑛 exp(𝑗𝑘𝑖𝑎), (5.7)

где 𝜉 = 𝜉(𝑘) — комплексный коэффициент усиления гармоники, 𝑘 — волновое
число гармоники, 𝑗 — мнимая единица. Подставив это выражение в схему
FTCS, получим:

𝜉𝑛+1 exp(𝑗𝑘𝑖𝑎) = 𝜉𝑛 exp(𝑗𝑘𝑖𝑎)− 𝑣ℎ

2𝑎
(𝜉𝑛 exp(𝑗𝑘(𝑖+ 1)𝑎)− 𝜉𝑛 exp(𝑗𝑘(𝑖− 1)𝑎))

𝜉 = 1− 𝑣ℎ

2𝑎
(exp(𝑗𝑘𝑎)− exp(−𝑗𝑘𝑎))

𝜉(𝑘) = 1− 𝑗
𝑣ℎ

𝑎
𝑠𝑖𝑛(𝑘𝑎) (5.8)

Видим, что |𝜉(𝑘)| > 1 и, таким образом, все моды будут экспоненциально
расти со временем.
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5.3. Схема Лакса — Фридрихса

Побороть проблему устойчивости метода FTCS можно в схеме, предло-
женной Лаксом и Фридрихсом, в которой несколько видоизменена аппрокси-
мация временной производной:

𝑓𝑛+1
𝑖 − 1

2(𝑓
𝑛
𝑖+1 + 𝑓𝑛𝑖−1)

ℎ
+ 𝑣

𝑓𝑛𝑖+1 − 𝑓𝑛𝑖−1

2𝑎
= 0 (5.9)

После несложных преобразований имеем:

𝑓𝑛+1
𝑖 =

1

2
(𝑓𝑛𝑖+1 + 𝑓𝑛𝑖−1)−

𝑣ℎ

2𝑎
(𝑓𝑛𝑖+1 − 𝑓𝑛𝑖−1) (5.10)

Проверим устойчивость, используя ту же подстановку 𝑓𝑛𝑖 = 𝜉𝑛 exp(𝑗𝑘𝑖𝑎):

𝜉𝑛+1 exp(𝑗𝑘𝑖𝑎) =
1

2
(𝜉𝑛 exp(𝑗𝑘(𝑖+ 1)𝑎) + 𝜉𝑛 exp(𝑗𝑘(𝑖− 1)𝑎))−

−𝑣ℎ
2𝑎

(𝜉𝑛 exp(𝑗𝑘(𝑖+ 1)𝑎)− 𝜉𝑛 exp(𝑗𝑘(𝑖− 1)𝑎))

𝜉 =
1

2
(exp(𝑗𝑘𝑎) + exp(−𝑗𝑘𝑎))− 𝑣ℎ

2𝑎
(exp(𝑗𝑘𝑎)− exp(−𝑗𝑘𝑎))

𝜉(𝑘) = 𝑐𝑜𝑠(𝑘𝑎)− 𝑗
𝑣ℎ

𝑎
𝑠𝑖𝑛(𝑘𝑎) (5.11)

В этом случае имеем

|𝜉(𝑘)|2 = 𝑐𝑜𝑠2(𝑘𝑎) +

(︂
𝑣ℎ

𝑎

)︂2

𝑠𝑖𝑛2(𝑘𝑎), (5.12)

и следовательно, |𝜉(𝑘)| ≤ 1, если 𝑣ℎ ≤ 𝑎. Последнее условие называется усло-
вием Куранта — Фридрихса — Леви (КФЛ) или просто условием Куранта.
Безразмерное число 𝐶 = 𝑣ℎ/𝑎 иногда также называют числом КФЛ или
числом Куранта. Наличие условия 𝐶 ≤ 1 является типичным для схем инте-
грирования эволюционных уравнений. Оно связано с тем, что аппроксимация
производных использует, как правило, значения функции только в соседних
точках сетки, и следовательно, не может корректно описывать ситуацию, ко-
гда за одну итерацию по времени сигнал распространяется на расстояние,
превышающее пространственный шаг сетки, то есть скорость распростране-
ния сигналов 𝑣 должна быть меньше, чем 𝑎/ℎ.

Метод Лакса — Фридрихса обладает двумя нежелательными свойствами.
Во-первых, он обеспечивает лишь 1-ый порядок точности по времени, а во-
вторых, он обладает высокой численной диффузией. Последний факт можно
продемонстрировать, переписав схему в следующем виде:

𝑓𝑛+1
𝑖 − 𝑓𝑛𝑖

ℎ
+ 𝑣

𝑓𝑛𝑖+1 − 𝑓𝑛𝑖−1

2𝑎
=

1

2

𝑓𝑛𝑖+1 − 2𝑓𝑛𝑖 + 𝑓𝑛𝑖−1

ℎ
(5.13)
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В последнем члене здесь угадывается аппроксимация 2-го уровня точности
второй пространственной производной. Таким образом, схема Лакса — Фри-
дрихса является, фактически, аппроксимацией уравнения

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑥
=
𝑎2

2ℎ

𝜕2𝑓

𝜕𝑥2
, (5.14)

которое относится к типу адвективно-диффузионных. Добавленная в этой
схеме численная диффузия, однако, является необходимой для её стабильно-
сти. Тем не менее степень этой диффузии можно уменьшить.

5.4. Схема Лакса — Вендроффа

Достичь уменьшенной диффузии позволяет, в частности, схема Лакса —
Вендроффа. Её построение основано на введении дополнительной вспомо-
гательной точки 𝑡𝑛+1/2 = (𝑡𝑛+1 + 𝑡𝑛)/2 и на использовании разновидности
метода, известного как метод предиктор-корректора. Суть метода заключа-
ется в том, что сначала, на стадии предиктора, значения функции в момент
времени 𝑡𝑛+1 вычисляются с небольшой точностью, а затем, на стадии кор-
ректора, эти значения используются для получения более точных значений
производных и уточнения значения функции в момент времени 𝑡𝑛+1.

В методе Лакса — Вендроффа на стадии предиктора используется следу-
ющая аппроксимация уравнения переноса:

𝑓𝑛+1
𝑖 − 𝑓𝑛𝑖

ℎ
+ 𝑣

𝑓𝑛𝑖+1 − 𝑓𝑛𝑖
𝑎

= 0, (5.15)

откуда получаем:

𝑓𝑛+1
𝑖 = 𝑓𝑛𝑖 − 𝑣ℎ

𝑎
(𝑓𝑛𝑖+1 − 𝑓𝑛𝑖 ) (5.16)

На стадии корректора используем ту же аппроксимацию, но симметричную
по односторонней производной:

𝑓𝑛+1
𝑖 − 𝑓

𝑛+ 1
2

𝑖

ℎ/2
+ 𝑣

𝑓𝑛+1
𝑖 − 𝑓𝑛+1

𝑖−1

𝑎
= 0, (5.17)

где для вычисления 𝑓𝑛+
1
2

𝑖 воспользуемся средним:

𝑓
𝑛+ 1

2

𝑖 =
𝑓𝑛𝑖 + 𝑓𝑛+1

𝑖

2
(5.18)

Получаем:

𝑓𝑛+1
𝑖 =

𝑓𝑛𝑖 + 𝑓𝑛+1
𝑖

2
− 𝑣ℎ

2𝑎

(︁
𝑓𝑛+1
𝑖 − 𝑓𝑛+1

𝑖−1

)︁
(5.19)
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и окончательно:

𝑓𝑛+1
𝑖 = 𝑓𝑛𝑖 − 𝑣ℎ

2𝑎
(𝑓𝑛𝑖+1 − 𝑓𝑛𝑖−1) +

𝑣2ℎ2

2𝑎2
(𝑓𝑛𝑖+1 − 2𝑓𝑛𝑖 + 𝑓𝑛𝑖−1) (5.20)

Как видим, в этой схеме по сравнению со схемой FTCS также добавлен
член, аппроксимирующий вторую производную, и следовательно добавляю-
щий численную диффузию. Эквивалентное уравнение в частных производ-
ных имеет вид:

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑥
=
𝑣2ℎ

2

𝜕2𝑓

𝜕𝑥2
(5.21)

Тем не менее, коэффициент диффузии в методе Лакса — Вендроффа 𝐷𝐿𝑊 =
𝑣2ℎ/2 меньше, чем в методе Лакса — Фридрихса 𝐷𝐿𝐹 = 𝑎2/2ℎ при выпол-
нении условия Куранта: 𝐷𝐿𝑊/𝐷𝐿𝐹 = 𝑣2ℎ2/𝑎2 = 𝐶2 < 1. Более того, можно
показать, что метод Лакса — Вендроффа обладает наименьшим коэффици-
ентом диффузии среди всех методов 2-го порядка точности по шагу сетки,
устойчивых при выполнении условия Куранта.

Дополнительно, благодаря использованию метода предиктора-корректора,
схема Лакса — Вендроффа оказывается 2-го порядка точности и по времени.

У этой схемы, однако, есть один недостаток, который может оказаться
существенным в некоторых задачах. Схема Лакса — Вендроффа не удовле-
творяет принципу максимума, то есть в процессе численного интегрирования
значения функции 𝑓 в некоторых точках могут выйти за пределы изначаль-
ного интервала [𝑓 0min, 𝑓

0
max]. Действительно, если мы рассмотрим следующее

представление схемы:

𝑓𝑛+1
𝑖 − 𝑓𝑛𝑖 = −𝑣ℎ

2𝑎
(𝑓𝑛𝑖+1 − 𝑓𝑛𝑖−1) +

𝑣2ℎ2

2𝑎2
(𝑓𝑛𝑖+1 − 2𝑓𝑛𝑖 + 𝑓𝑛𝑖−1) , (5.22)

то можем заметить, что, например, если 𝑓𝑛𝑖−1 = 𝑓𝑛𝑖 = 𝑓𝑛max, то 𝑓𝑛+1
𝑖 − 𝑓𝑛𝑖 =

𝐶(1−𝐶)(𝑓𝑛max−𝑓𝑛𝑖+1) и это выражение всегда положительно при выполнении
условия Куранта 𝐶 < 1, то есть 𝑓𝑛+1

𝑖 > 𝑓𝑛max, и следовательно, принцип
максимума будет нарушен.

Нарушение принципа максимума приводит, во-первых, к возникновению
нефизичных осцилляций функции 𝑓 , которые особенно ярко проявляются
вблизи точек с сильным изменением градиента функции, а во-вторых, к тому,
что функция может стать отрицательной, что не имеет физического смысла.

Можно показать, что нарушение принципа максимума свойственно всем
схемам с порядком точности выше 1-го, поэтому в ситуациях, когда это кри-
тично, используют схему пониженной точности, основанную на использова-
нии односторонних конечных разностей по пространству:

𝑓𝑛+1
𝑖 − 𝑓𝑛𝑖

ℎ
=

⎧⎪⎨⎪⎩
− 𝑣

𝑓𝑛𝑖 − 𝑓𝑛𝑖−1

𝑎
⇐⇒ 𝑣 > 0

− 𝑣
𝑓𝑛𝑖+1 − 𝑓𝑛𝑖

𝑎
⇐⇒ 𝑣 < 0

(5.23)
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Рис. 5.1. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью методами Лакса — Вендроффа и upwind для случая синусоидальных началь-
ных и периодических граничных условий. Сверху приведено изначальное распределение
и распределения, полученные через некоторое время обеими методами. Снизу показана
абсолютная ошибка численного решения по отношению к точному решению

Эта схема устойчива при выполнении условия Куранта и не нарушает прин-
ципа максимума, однако из-за 1-го порядка точности по пространству она
обладает высокой диффузией и для достижения высокой точности требует
использования малых значений шагов по времени и пространству, что делает
её непрактичной.

Чтобы продемонстрировать отличия схемы Лакса — Вендроффа и схемы
upwind на Рис. 5.1 приведён результат численного решения уравнения ад-
векции обеими методами для синусоидальных начальных и периодических
граничных условий. Мы видим, что хотя визуально решения практически
неотличимы друг от друга и в целом относительная ошибка невелика, абсо-
лютная ошибка метода Лакса — Вендроффа для выбранных параметров на
порядок меньше метода upwind.

На Рис. 5.2 приведён результат численного решения уравнения адвекции
теми же методами для начальных условий в виде гауссовой функции. Здесь
мы видим, что визуально метод Лакса — Вендроффа даёт более точно ре-
шение, что связано с сильным расплыванием решения методом upwind из-за
более высокой численной диффузией. Тем не менее абсолютная ошибка обоих
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Рис. 5.2. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью методами Лакса — Вендроффа и upwind для случая гауссового начального
распределения. Сверху приведено изначальное распределение и распределения, получен-
ные через некоторое время обеими методами, а также точное решение уравнений. Снизу
показана абсолютная ошибка численного решения по отношению к точному решению

методов уже не отличается так значительно, поскольку проявляется свойство
метода Лакса — Вендроффа искажать первоначальное распределение из-за
использования в конечных разностях значений функции вниз по течению.
Кроме того, метод Лакса — Вендроффа даёт заведомо нефизичный резуль-
тат в виде отрицательных значений функции распределения. Таким образом,
для распределений с большим перепадом значений преимущества методов 2-
го порядка точности нивелируются их недостатками.

Существуют также гибридные схемы, которые в области, где функция рас-
пределения достаточно гладкая, используют метод 2-го порядка точности, и
только в областях, где её использование может привести к нарушению прин-
ципа максимума, используется схема 1-го порядка точности. Такие схемы так-
же называют схемами с ограничителем наклона, поскольку их использование
основано на искусственном уменьшении наклона функции, то есть разности
𝑓𝑖+1 − 𝑓𝑖 при аппроксимации производных в опасных точках. Этот метод по
своей сути аналогичен методу ограничения потоков, который мы рассмотрим
далее в разделе про метод конечных объёмов, поэтому здесь мы его подробно
описывать не будем.
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Глава 6

Спектральные методы

6.1. Общие сведения о спектральных методах

Идея спектральных методов заключается в том, чтобы разложить неиз-
вестную функцию по ортогональному набору функций так, чтобы дифферен-
циальное уравнение в частных производных обратилось в систему обыкновен-
ных дифференциальных уравнений для образов. Поскольку, однако, полный
набор ортогональных функций, как правило, бесконечен, численное разложе-
ние является приближённым, что вводит ошибку аппроксимации.

Наиболее хорошо спектральные методы работают для линейных уравне-
ний, однако часть из них поддаются обобщению на нелинейный случай. При
этом нелинейный оператор аппроксимируется на малом шаге по времени ли-
нейным. Уравнения Власова в заданных полях являются линейными, однако
если поля вычисляются самосогласованным образом, то задача в целом ста-
новится нелинейной.

Рассмотрим одномерное уравнение переноса следующего вида:

𝜕𝑓

𝜕𝑡
+ 𝑣(𝑥, 𝑡)

𝜕𝑓

𝜕𝑥
= 0 (6.1)

Дадим несколько определений. Базисными функциями (𝜑0, . . . , 𝜑𝑁) называют
набор функций, по которым производится разложение неизвестной функции
в ряд:

𝑓(𝑡, 𝑥) ≈ 𝑓𝑁(𝑡, 𝑥) =
𝑁∑︁
𝑘=0

𝑔𝑘(𝑡)𝜑𝑘(𝑥) (6.2)

Вектор {𝑔𝑘, 𝑘 = 0 . . . 𝑁} будем называть образом функции 𝑓 . От базисных
функций, как правило, требуют ортонормированность:∫︁

𝜑𝑚(𝑥)𝜑𝑛(𝑥)𝑤(𝑥)𝑑𝑥 = 𝛿𝑚𝑛, (6.3)

где 𝑤(𝑥) называют весом (часто его кладут равным единице).
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Невязкой называют точность аппроксимации, которая определяется сле-
дующим образом:

𝑅𝑁 =
𝜕𝑓𝑁

𝜕𝑡
+ 𝑣(𝑥, 𝑡)

𝜕𝑓𝑁

𝜕𝑥
(6.4)

Задачей построения схемы интегрирования является поиск такого алгоритма,
который минимизировал бы невязку. Для этого вводят тестовые функции
(𝜓0, . . . , 𝜓𝑁) и требуют, чтобы выполнялись следующие равенства:∫︁

𝜓𝑛(𝑥)𝑅𝑁(𝑥)𝑑𝑥 = 0, 𝑛 ∈ 0 . . . 𝑁 (6.5)

Чаще всего применяют два метода построения спектральных схем. В ме-
тоде Галёркина тестовые функции совпадают с базисными, то есть требуется,
чтобы ∫︁

𝜑𝑛(𝑥)𝑅𝑁(𝑥)𝑑𝑥 = 0, 𝑛 ∈ 0 . . . 𝑁 (6.6)

или, другими словами, чтобы невязка была ортогональна всем базисным
функциям.

В псевдоспектральном методе или методе коллокаций тестовые функции
представляют собой дельта-функции в некотором специальном подобранном
наборе точек, называемых точками коллокации: 𝜓𝑛(𝑥) = 𝛿(𝑥 − 𝑥𝑛). Таким
образом, требуется, чтобы∫︁

𝑅𝑁(𝑥)𝜓𝑛(𝑥)𝑑𝑥 =

∫︁
𝑅𝑁(𝑥)𝛿(𝑥− 𝑥𝑛)𝑑𝑥 = 𝑅𝑁(𝑥𝑛) = 0 (6.7)

или, другими словами, чтобы невязка равнялась нулю в точках коллокации.

6.2. Метод преобразования Фурье

Рассмотрим, как работают метод Галёркина и псевдоспектральный метод
в случае преобразования Фурье. Пусть требуется найти решение уравнения
переноса в области 𝑥 ∈ [0, 𝐿] в предположении периодических граничных
условий. Выберем в качестве базисных функций набор гармонических функ-
ций:

𝜑𝑛(𝑥) =
1√
2𝜋𝐿

exp

(︂
𝑖𝑛

2𝜋𝑥

𝐿

)︂
, −𝑁 ⩽ 𝑛 ⩽ 𝑁, 0 ⩽ 𝑥 ⩽ 𝐿, (6.8)

тогда решение уравнения 𝑓(𝑡, 𝑥) будет аппроксимировано функцией

𝑓𝑁(𝑡, 𝑥) =
1√
2𝜋𝐿

𝑁∑︁
𝑘=−𝑁

𝑔𝑘(𝑡) exp

(︂
𝑖𝑘
2𝜋𝑥

𝐿

)︂
(6.9)
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Для поиска уравнения для коэффициентов 𝑔𝑘(𝑡) применим вначале метод
Галёркина, то есть потребуем, чтобы выполнялось∫︁

𝑅𝑁(𝑥)𝜑𝑛(𝑥)𝑑𝑥 =

=
1√
2𝜋𝐿

∫︁ (︂
𝜕𝑓𝑁

𝜕𝑡
+ 𝑣(𝑥, 𝑡)

𝜕𝑓𝑁

𝜕𝑥

)︂
exp

(︂
−𝑖𝑛2𝜋𝑥

𝐿

)︂
𝑑𝑥 = 0, (6.10)

𝑛 = −𝑁 . . .𝑁

Учтём свойства Фурье-преобразования, которые приводят к следующим со-
отношениям между функциями и их образами:

𝑓𝑁 ⇒ 𝑔𝑘(𝑡) (6.11)
𝜕𝑓𝑁

𝜕𝑡
⇒ 𝑔̇𝑘(𝑡) (6.12)

𝜕𝑓𝑁

𝜕𝑥
⇒ 𝑖𝑘

2𝜋

𝐿
𝑔𝑘(𝑡) (6.13)

𝑣(𝑥, 𝑡) ⇒ 𝑢𝑘(𝑡) (6.14)

𝑣(𝑥)
𝜕𝑓𝑁

𝜕𝑥
⇒ 𝑢 * 𝑔 ≡

𝑁∑︁
𝑘=−𝑁

𝑢𝑛−𝑘𝑖𝑘
2𝜋

𝐿
𝑔𝑘(𝑡) (6.15)

Таким образом, из уравнения (6.10) получаем следующее уравнение для об-
разов:

𝑔̇𝑛(𝑡) + 𝑖
𝑁∑︁

𝑘=−𝑁

𝑢𝑛−𝑘𝑘
2𝜋

𝐿
𝑔𝑘(𝑡) = 0, 𝑛 ∈ −𝑁 . . .𝑁 (6.16)

Это система обыкновенных дифференциальных уравнений, которая может
быть решена стандартными численными методами, например, из семейства
методов Рунге — Кутта. Фигурирующие здесь коэффициенты Фурье-разложения
𝑢𝑘(𝑡), а также начальные условия 𝑔𝑘(0) можно определять численно. Недо-
статком метода является необходимость вычисления свёртки 𝑢 * 𝑔, которая
представляет собой коэффициенты матрицы размером (2𝑁 + 1)× (2𝑁 + 1),
и следовательно, имеет вычислительную сложность пропорциональную 𝑁 2.
Кроме того, обобщение этой свёртки на нелинейный случай не является три-
виальным и требует особого подхода. В связи с этим более предпочтительным
на практике оказывается использование псевдоспектрального метода, лишён-
ного этих недостатков.

В псевдоспектральном методе Фурье мы используем те же базисные функ-
ции:

𝜑𝑛(𝑥) =
1√
2𝜋𝐿

exp

(︂
𝑖𝑛

2𝜋𝑥

𝐿

)︂
, −𝑁 ⩽ 𝑛 ⩽ 𝑁, 0 ⩽ 𝑥 ⩽ 𝐿 (6.17)
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и ту же аппроксимацию неизвестной функции:

𝑓𝑁(𝑥, 𝑡) =
1√
2𝜋𝐿

𝑁∑︁
𝑘=−𝑁

𝑔𝑘(𝑡) exp

(︂
𝑖𝑘
2𝜋𝑥

𝐿

)︂
(6.18)

Однако теперь потребуем, чтобы выполнялось

𝑅𝑁(𝑥𝑛) = 0, 𝑥𝑛 = 𝑛
𝐿

𝑁
, 𝑛 = 0 . . . 𝑁 (6.19)

То есть точки коллокации в данном случае выбирают равномерно распреде-
лёнными по всему промежутку 𝑥 ∈ [0, 𝐿].

Введём обозначения

𝑓𝑛 ≡ 𝑓𝑁
(︂
𝑥𝑛 ≡ 𝑛

𝐿

𝑁

)︂
(6.20)(︂

𝜕𝑓

𝜕𝑥

)︂
𝑛

≡ 𝜕𝑓𝑁

𝜕𝑥

(︂
𝑥𝑛 ≡ 𝑛

𝐿

𝑁

)︂
(6.21)

𝑣𝑛 ≡ 𝑣

(︂
𝑥𝑛 ≡ 𝑛

𝐿

𝑁

)︂
, (6.22)

тогда

𝑓𝑛 =
1√
2𝜋𝐿

𝑁∑︁
𝑘=−𝑁

𝑔𝑘 exp

(︂
𝑖𝑘
2𝜋𝑛

𝑁

)︂
(6.23)

(︂
𝜕𝑓

𝜕𝑥

)︂
𝑛

=
1√
2𝜋𝐿

𝑁∑︁
𝑘=−𝑁

(︂
𝑖𝑘
2𝜋

𝐿

)︂
𝑔𝑘 exp

(︂
𝑖𝑘
2𝜋𝑛

𝑁

)︂
, (6.24)

и уравнение (6.19) приводит к системе уравнений

𝜕𝑓𝑛
𝜕𝑡

+ 𝑣𝑛

(︂
𝜕𝑓

𝜕𝑥

)︂
𝑛

= 0, 𝑛 = 0 . . . 𝑁, (6.25)

из которой получаем систему обыкновенных дифференциальных уравнений:

𝑓𝑛 = − 𝑣𝑛√
2𝜋𝐿

𝑁∑︁
𝑘=−𝑁

(︂
𝑖𝑘
2𝜋

𝐿

)︂
𝑔𝑘 exp

(︂
𝑖𝑘
2𝜋𝑛

𝑁

)︂
, 𝑛 = 0 . . . 𝑁 (6.26)

В этой схеме отсутствует операция свёртки, и всё сводится к взятию пря-
мого и обратного преобразования Фурье, которое можно выполнить числен-
но. Особенно эффективно схема работает при применении численного метода
быстрого преобразования Фурье. Схема также может быть легко обобщена
на нелинейный случай 𝑣 = 𝑣(𝑥, 𝑓), в котором лишь поменяется определение
𝑣𝑛 = 𝑣(𝑥𝑛, 𝑓𝑛).
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Рассмотрим пример решения одномерного уравнения адвекции с посто-
янной скоростью псевдоспектральным методом Фурье. Для аппроксимации
временной эволюции воспользуемся вначале методом Эйлера, имеющим 1-ый
порядок точности:

𝑓𝑚+1
𝑛 = 𝑓𝑚𝑛 − ℎ𝐹𝑛{𝑓𝑚}, (6.27)

где ℎ — шаг по времени и введено обозначение

𝐹{𝑓} = F−1 [𝑖𝑘𝑣F(𝑓)] , (6.28)

и F и F−1 — прямое и обратное преобразование Фурье, аппроксимирован-
ное рядом длины 𝑁 . Результат численного решения для начальных условий
в виде синусоидальной функции и периодических граничных условий при-
ведён на Рис. 6.1. Отметим, что численные параметры моделирования (шаг
по координате и времени) здесь выбраны такими же, как и на Рис. 5.1, при
этом время моделирования выбрано короче из-за неустойчивости схемы на
больших временах. Видим, что метод Фурье со схемой Эйлера оказывается
сравним по точности с методом upwind, но значительно уступает методу Лак-
са — Вендроффа из-за 1-го порядка точности интегрирования по времени.

Построим схему второго порядка точности по времени, используя метод
предиктор-корректора. На шаге предиктора вычислим

𝑓𝑚+1/2
𝑛 = 𝑓𝑚𝑛 − ℎ

2
𝐹𝑛{𝑓𝑚}, (6.29)

а на шаге корректора используем это решение для получения более точного
результата:

𝑓𝑚+1
𝑛 = 𝑓𝑚𝑛 − ℎ𝐹𝑛{𝑓𝑚+1/2} (6.30)

Результат решения той же задачи этим методом приведён на Рис. 6.2. Как
видим, метод достигает той же точности, что и метод Лакса — Вендроффа
на Рис. 5.1.

На Рис. 6.3 приведён результат численного решения тем же методом за-
дачи с начальным гауссовым распределением. Как видим, результат полу-
чился неудовлетворительным как по точности, которая сравнима с конечно-
разностными методами, так и физически в связи с появлением отрицатель-
ных значений функции распределения.

Отметим, что в этих расчётах шаг по времени выбирался таким же, как и
в примерах для конечно-разностных методов с целью их сравнения по точ-
ности. Число Куранта здесь равнялось 𝐶 = 0,8. Этого, однако, оказывает-
ся недостаточно для сколь-нибудь долговременной устойчивости псевдоспек-
трального метода Фурье. Причиной неустойчивости является эффект али-
асинга, то есть ошибки дискретизации спектра, который приводит к тому,
что для самой высокой дискретной частоты происходит накопление ошибки
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Рис. 6.1. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью псевдоспектральным методом Фурье в схеме Эйлера для случая синусоидаль-
ных начальных и периодических граничных условий. Сверху приведено изначальное рас-
пределение и распределение, полученное численно, а также точное решение. Снизу пока-
зана абсолютная ошибка численного решения по отношению к точному решению
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Рис. 6.2. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью псевдоспектральным методом Фурье в схеме предиктор-корректора для слу-
чая синусоидальных начальных и периодических граничных условий. Сверху приведено
изначальное распределение и распределение, полученное численно, а также точное реше-
ние. Снизу показана абсолютная ошибка численного решения по отношению к точному
решению
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Рис. 6.3. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью псевдоспектральным методом Фурье в схеме предиктор-корректора для слу-
чая начального распределения в виде гауссовой функции. Сверху приведено изначальное
распределение и распределение, полученное численно, а также точное решение. Снизу по-
казана абсолютная ошибка численного решения по отношению к точному решению
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аппроксимации. Это хорошо заметно на Рис. 6.3, где во всей области инте-
грирования появляется мелкая рябь с периодом порядка пространственного
шага. В конце концов эта рябь нарастает до уровня сигнала и начинает доми-
нировать. Увеличить устойчивость расчёта удаётся за счёт уменьшения шага
по времени, однако более универсальным решением является использование
спектральной фильтрации: на каждой итерации спектральное разложение до-
множается на некую функцию, равную единице всюду, кроме нескольких вы-
соких частот, где она плавно спадает до нуля. Это делает схему диссипатив-
ной и добавляет численную диффузию, поэтому подбор оптимальной маски
определяется конкретным видом решаемой задачи. Другой способ борьбы:
использование неявных схем интегрирования по времени, что, однако, увели-
чивает вычислительную сложность схемы.

6.3. Метод преобразования Эрмита

Спектральный метод Фурье работает наилучшим образом, когда гранич-
ные условия периодические. Однако для зависимости функции распределе-
ния от импульсных координат это никогда не выполняется. В этом случае,
однако, функция распределения часто с хорошей точностью аппроксимиру-
ются функцией Гаусса при больших значениях импульса. Для её разложения
тогда удобно использовать преобразование Эрмита.

Отнормированное преобразование Эрмита имеет следующий вид:

ℋ̂ {𝑓(𝑥)} (𝑛) ≡
∫︁
𝑓(𝑥)𝐻𝑛(𝑥)𝑒

−𝑥2

𝑑𝑥, (6.31)

где 𝐻𝑛(𝑥) — многочлены Эрмита. Соответствующие базисные функции будут
иметь следующий вид:

𝜑𝑛(𝑥) ≡ 𝐻̃𝑛(𝑥) =

√︂
𝛼

2𝑛𝑛!
√
𝜋
𝐻𝑛(𝛼𝑥)𝑒

−𝛼2𝑥2

, (6.32)

где 𝛼 > 0 — масштабный фактор, определяющий ширину гауссовых функ-
ций. 𝛼 является параметром преобразования и может быть выбран из со-
ображений удобства. Для наиболее точного разложения квазиравновесного
распределения с температурой 𝑇 этот параметр следует выбирать равным
𝛼2 = 1/(2𝑚𝑇 ).

Для базисных функций преобразования Эрмита справедливы следующие
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соотношения:

𝛼𝑥𝐻̃𝑛(𝑥) =

√︂
𝑛+ 1

2
𝐻̃𝑛+1(𝑥) +

√︂
𝑛

2
𝐻̃𝑛−1(𝑥) (6.33)

𝑑

𝑑𝑥
𝐻̃𝑛(𝑥) = −𝛼

√︁
2(𝑛+ 1)𝐻̃𝑛+1(𝑥) (6.34)

𝑥
𝑑

𝑑𝑥
𝐻̃𝑛(𝑥) = −

√︁
(𝑛+ 1)(𝑛+ 2)𝐻̃𝑛+2(𝑥)− (𝑛+ 1)𝐻̃𝑛(𝑥) (6.35)∫︁
𝐻̃𝑚(𝑥)𝐻̃𝑛(𝑥)𝑤(𝑥)𝑑𝑥 = 𝛿𝑚𝑛 (6.36)∫︁

𝑑

𝑑𝑥
𝐻̃𝑚(𝑥)

𝑑

𝑑𝑥
𝐻̃𝑛(𝑥)𝑤(𝑥)𝑑𝑣 = 2𝛼(𝑛+ 1)𝛿𝑚𝑛 (6.37)

𝑤(𝑥) ≡ exp(𝛼2𝑥2) (6.38)

Кроме того, для образов преобразования Эрмита выполняются следующие
соотношения:

𝑓(𝑡, 𝑥) =
𝑁∑︁
𝑛=0

𝑔𝑛(𝑡)𝐻̃𝑛(𝑥) (6.39)

𝑔𝑛(𝑡) =

∫︁
𝑓(𝑥, 𝑡)𝐻̃𝑛𝑤(𝑥)𝑑𝑥 (6.40)

𝜕

𝜕𝑡
𝑓(𝑡, 𝑥) =

𝑁∑︁
𝑛=0

𝑔̇𝑛(𝑡)𝐻̃𝑛(𝑥) (6.41)

𝜕

𝜕𝑥
𝑓(𝑡, 𝑥) = −𝛼

𝑁∑︁
𝑛=1

𝑔𝑛−1(𝑡)
√
2𝑛𝐻̃𝑛(𝑥) (6.42)

Если можно считать, что скорость 𝑣 в уравнении переноса

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑥
= 0 (6.43)

постоянная в пространстве, то тогда применение метода Галёркина для пре-
образования Эрмита даёт особо простую систему уравнений:

𝑔̇0 = 0
...

𝑔̇𝑛 = 𝛼
√
2𝑛𝑣𝑔𝑛−1

...

𝑔̇𝑁 = 𝛼
√
2𝑛𝑣𝑔𝑁−1

(6.44)

Скорость адвекции 𝑣 вдоль импульсной координаты 𝑝𝑥, однако, содержит
𝑥-проекцию магнитной силы [(𝑝/𝛾) × 𝐵⃗], которая в релятивистском случае
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зависит от 𝑝𝑥. В этом случае удобнее использовать псевдоспектральный ме-
тод.

Для псевдоспектрального метода Эрмита точки коллокации удобнее вы-
брать в соответствии с квадратурной формулой Гаусса — Эрмита:

{𝜉𝑘}, 𝑘 = 0 . . . 𝑁, 𝐻𝑁+1(𝜉𝑘) = 0 (6.45)

Эти точки выделены тем, что для них следующее равенство выполняется
точно, если функция 𝑓(𝑥) — многочлен степени 2𝑁 − 1 или ниже:∫︁

𝑓(𝑥)𝑒−𝛼2𝑥2

𝑑𝑥 =
𝑁∑︁
𝑘=0

𝑤𝑘𝑓

(︂
𝜉𝑘
𝛼

)︂
(6.46)

где 𝑤𝑘 — весовые коэффициенты, определяемые по следующей формуле:

𝑤𝑘 ≡
1

𝛼

∫︁
𝐿𝑘(𝑥)𝑒

−𝑥2

𝑑𝑥 (6.47)

Здесь 𝐿𝑘(𝑥) — так называемый многочлен Лагранжа, то есть многочлен 𝑁+1
степени такой, что 𝐿𝑘(𝜉𝑚) = 𝛿𝑘𝑚. На практике весовые коэффициенты можно
вычислить по формуле

𝑤𝑘 =
1∑︀𝑁

𝑚=0

[︂√︁
𝛼

2𝑚𝑚!
√
𝜋
𝐻𝑚 (𝜉𝑘)

]︂2 (6.48)

Снова введём базисные функции, на этот раз в виде

𝐻̄𝑛(𝑥) =

√︂
𝛼

2𝑛𝑛!
√
𝜋
𝐻𝑛(𝛼𝑥)𝑒

− 1
2𝛼

2𝑥2

, 𝛼 > 0, (6.49)

тогда

𝑓(𝑡, 𝑥) =
𝑁∑︁
𝑘=0

𝑔𝑘(𝑡)𝐻̄𝑛(𝑥) (6.50)

и

𝑔𝑘(𝑡) =
𝑁∑︁
𝑗=0

𝑓

(︂
𝜉𝑗
𝛼
, 𝑡

)︂
𝐻̄𝑘

(︂
𝜉𝑗
𝛼

)︂
1

𝐶𝑗
, (6.51)

где

𝐶𝑗 =
𝑁∑︁
𝑘=0

[︂
𝐻̄𝑘

(︂
𝜉𝑗
𝛼

)︂]︂2
(6.52)

Для производной имеем:

𝜕

𝜕𝑥
𝑓

(︂
𝜉𝑗
𝛼
, 𝑡

)︂
=

𝑁∑︁
𝑘=0

𝑔𝑘(𝑡)𝐻̄
′
𝑛(𝑥) (6.53)
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Введём обозначение:

𝑓𝑗(𝑡) ≡ 𝑓

(︂
𝑡,
𝜉𝑗
𝛼

)︂
, (6.54)

тогда {𝑓𝑗} образует вектор, который мы обозначим 𝐹 . Для него получаем
следующее уравнение:

𝐹̇ = −𝑣𝐷𝐹 (6.55)

где 𝐷 ≡ {𝑑𝑖𝑗} — матрица, определяемая выражением

𝑑𝑖𝑗 =
𝛼

𝐶𝑗

𝑁−1∑︁
𝑘=1

𝐻̄𝑘

(︂
𝜉𝑗
𝛼

)︂[︃√︂
𝑘

2
𝐻̄𝑘−1

(︂
𝜉𝑖
𝛼

)︂
−
√︂
𝑘 + 1

2
𝐻̄𝑘+1

(︂
𝜉𝑖
𝛼

)︂]︃
−

−
√︂

1

2
𝐻̄0

(︂
𝜉𝑗
𝛼

)︂
𝐻̄1

(︂
𝜉𝑗
𝛼

)︂
+

√︂
𝑁

2
𝐻̄𝑁

(︂
𝜉𝑗
𝛼

)︂
𝐻̄𝑁−1

(︂
𝜉𝑗
𝛼

)︂
(6.56)

Таким образом, снова получаем систему обыкновенных дифференциальных
уравнений, которую можно решать стандартными методами.

Эрмитово разложение хорошо работает для кинетики, близкой к равновес-
ной. При этом при значительном нагреве можно использовать перемасшта-
бирование функций Эрмита с новой температурой. Так же, как и для Фурье-
преобразования псевдоспектральный метод допускает простое обобщение на
нелинейный случай.

Общая проблема спектральных методов заключается в сложности их эф-
фективной параллелизации, то есть выполнения на вычислительных систе-
мах с распределённой памятью, в частности, суперкомпьютерных кластерах.
Это обусловлено тем, что используемые преобразования носят глобальный
характер: требуется вычисление интегралов во всём пространстве. Это так-
же может приводить к нарушению лоренц-инвариантности: вообще говоря,
не существует способов ограничения скорости распространения возмущений
в аппроксимированных уравнениях. Кроме того, для спектральных методов
затруднительно реализовать ограничители, которые обеспечили бы выполне-
ние принципа максимума. Наконец, для спектральных методов, как правило,
значительно сложнее проводить анализ устойчивости, что может приводить
к её нарушению при незначительном изменении параметров моделирования.
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Глава 7

Метод конечных объёмов

7.1. Общие сведения о методе конечных объёмов

Для уравнений, выражающих собой законы сохранения часто бывает важ-
ным, чтобы численная схема обеспечивала выполнение закона сохранения
точно (по крайней мере с машинной точностью), а не приближённо. Напри-
мер, если численная схема не сохраняет число частиц, то в плазме спора-
дически возникает нескомпенсированный заряд и соответствующее электро-
статическое поле, которое приводит к сильному ускорению частиц и их ис-
кусственному нагреву. Хотя методы конечных разностей и спектральные ме-
тоды в простейших случаях обеспечивают выполнение законов сохранения,
это свойство не зашито в них в явном виде, и при усложнении схемы мо-
жет пропасть. При использовании этих схем обеспечение закона сохранения
становится нетривиальной задачей.

Такого недостатка лишены методы, учитывающие законы сохранения яв-
но. Они получили название методов конечных или контрольных объёмов,
поскольку в них переходят от дифференциального уравнения к эквивалент-
ному интегральному, и дискретизируются не производные, а интегралы для
малых объёмов и ограничивающих их поверхностей.

Уравнения кинетики выражают собой закон сохранения числа частиц в
фазовом пространстве. В явном виде это видно из дивергентной формы урав-
нения [1.60]:

𝜕𝑓

𝜕𝑡
+∇𝑟⃗,𝑝 (A𝑓) = 0 (7.1)

A =
{︁
𝑣⃗, 𝑞𝐸⃗ +

𝑞

𝑐

[︁
𝑣⃗ × 𝐵⃗

]︁}︁
(7.2)

Величина, стоящая под дивергенцией, Φ ≡ A𝑓 имеет смысл потока частиц.
Для применения метода конечных объёмов разобьём всё пространство сет-

кой. В одномерном случае сетка представляет собой набор точек

{𝑥𝑖}𝑖=1...𝑁 (7.3)
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Окружим каждую точку сетки конечным (контрольным) объёмом:

𝑉𝑖 ≡
(︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

)︁
(7.4)

𝑥𝑖+ 1
2
≡ 𝑥𝑖+1 + 𝑥𝑖

2
(7.5)

𝑥𝑖− 1
2
≡ 𝑥𝑖 + 𝑥𝑖−1

2
(7.6)

и будем аппроксимировать функцию средним значением по этому объёму:

𝑓𝑛𝑖 ≡ 1

𝑉𝑖

∫︁
𝑉𝑖

𝑓(𝑡𝑛, r)𝑑𝑉 =
1

𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2

𝑥
𝑖+1

2∫︁
𝑥
𝑖− 1

2

𝑓(𝑡𝑛, 𝑥)𝑑𝑥 (7.7)

Для построения схемы интегрирования воспользуемся уравнением в ди-
вергентной форме:

𝜕𝑓

𝜕𝑡
+
𝜕Φ(𝑡, 𝑥)

𝜕𝑥
= 0, (7.8)

проинтегрируем его по конечному объёму:

d

d𝑡

𝑥
𝑖+1

2∫︁
𝑥
𝑖− 1

2

𝑓(𝑡, 𝑥)𝑑𝑥+

𝑥
𝑖+1

2∫︁
𝑥
𝑖− 1

2

𝜕Φ(𝑡, 𝑥)

𝜕𝑥
𝑑𝑥 = 0 (7.9)

и воспользуемся теоремой Остроградского — Гаусса:(︁
𝑥𝑖+ 1

2
− 𝑥𝑖− 1

2

)︁ d𝑓𝑖
d𝑡

+ Φ𝑖+ 1
2
(𝑡)− Φ𝑖− 1

2
(𝑡) = 0, (7.10)

где по определению

Φ𝑖+ 1
2
(𝑡) ≡ Φ(𝑡, 𝑥𝑖+ 1

2
) (7.11)

Φ𝑖− 1
2
(𝑡) ≡ Φ(𝑡, 𝑥𝑖− 1

2
) (7.12)

Получившееся уравнение выражает собой баланс жидкости в объёме с учётом
её потоков через границы объёма.

7.2. Схема Годунова

Существует несколько подходов к вычислению потоков в получившемся
уравнении. Рассмотрим один из наиболее часто использующихся, называе-
мый схемой Годунова. Для этого проинтегрируем уравнение по времени в
интервале [𝑡𝑛, 𝑡𝑛+1]:

𝑓𝑛+1
𝑖 − 𝑓𝑛𝑖 = − 1

𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2

𝑡𝑛+1∫︁
𝑡𝑛

[︁
Φ𝑖+ 1

2
(𝑡)− Φ𝑖− 1

2
(𝑡)
]︁
𝑑𝑡, (7.13)
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Рис. 7.1. (а) Пример аппроксимации функции распределения в соседних конечны объёмах,
приводящей к возникновению разрыва функции на границе объёмов. (б) Аппроксимация
функций распределения в контрольных объёмах постоянными значениями. (в) Принцип
вычисления интегрального потока через границу объёмов

а для вычисления интегралов от потоков воспользуемся точным или числен-
ным решением так называемой задачи Римана. Преимуществом такого под-
хода является то, что вся физическая суть схемы оказывается заключенной
в решение отдельной, относительно простой по своей постановке задачи.

Задачей Римана называют задачу об эволюции разрыва во времени. Если
мы проведём аппроксимацию функции внутри каждого объёма тем или иным
образом, то в общем случае на границе конечных объёмов функция будет
иметь разрыв, как приведено на Рис. 7.1 (а). Со временем такая конфигура-
ция будет как-то эволюционировать. Если мы знаем решение этой задачи, то
можем вычислить и поток в каждый момент времени, и интеграл от него во
времени. Пусть решение соответствующей задачи может быть представлено
в виде:

𝑡𝑛+1∫︁
𝑡𝑛

Φ𝑖− 1
2
(𝑡)𝑑𝑡 = Δ𝑡ΦRiemann(𝑡

𝑛, 𝑥𝑖−1, 𝑥𝑖, 𝑓
𝑛
𝑖−1, 𝑓

𝑛
𝑖 ), (7.14)

где Δ𝑡 ≡ 𝑡𝑛+1 − 𝑡𝑛.
Потребуем, чтобы в самом общем случае решение задачи Римана удовле-

творяло следующим свойствам. Во-первых, если в соседних объёмах средние
плотности фазовой жидкости равны, то поток должен равняться потоку од-
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нородной в пространстве жидкости:

ΦRiemann(𝑓
𝑛
𝑖−1, 𝑓

𝑛
𝑖 ) = Φ(𝑓𝑛𝑖−1) ⇐⇒ 𝑓𝑛𝑖−1 = 𝑓𝑛𝑖 (7.15)

А во-вторых, потребуем, чтобы увеличение плотности жидкости в объёме
никогда не приводило к снижению потока из этого объёма:

𝜕ΦRiemann

𝜕𝑓𝑛𝑖−1

≥ 0 (7.16)

𝜕ΦRiemann

𝜕𝑓𝑛𝑖
≤ 0 (7.17)

Простейшим случаем является аппроксимация профиля 𝑓 внутри объёма
постоянным значением (см. Рис. 7.1 (б)). В этом случае решение задачи Ри-
мана для постоянной скорости потока запишется следующим образом (см.
Рис. 7.1 (в)):

ΦRiemann =

⎧⎪⎪⎨⎪⎪⎩
Φ(𝑡𝑛, 𝑥𝑖−1, 𝑓

𝑛
𝑖−1) = 𝑣𝑓𝑖−1 ⇐⇒ 𝜕Φ

𝜕𝑓
= 𝑣 > 0

Φ(𝑡𝑛, 𝑥𝑖, 𝑓
𝑛
𝑖 ) = 𝑣𝑓𝑖 ⇐⇒ 𝜕Φ

𝜕𝑓
= 𝑣 < 0

(7.18)

В таком виде схема Годунова точно сохраняет число частиц во всём про-
странстве, поскольку по построению потоки на границе в соседних объёмах в
точности равны. При этом выполняется также принцип максимума. Постро-
енная схема, однако, имеет 1-ый порядок точности по шагу пространственной
сетки и по шагу по времени. А кроме того она оказывается чрезмерно диф-
фузионной.

Повысить порядок точности и снизить её диффузионность можно за счёт
использования более высокого порядка аппроксимации функции в конеч-
ном объёме. Например, можно использовать кусочно-линейную центрально-
взвешенную схему, как изображено на Рис. 7.1 (г). Потоки в задаче Римана
в этом случае аппроксимируются следующим образом:

ΦRiemann ≈ Φ

(︂
𝑓𝑖 + 𝑓𝑖−1

2

)︂
= 𝑣

𝑓𝑖 + 𝑓𝑖−1

2
(7.19)

Оказывается, однако, что все схемы Годунова с порядком аппроксимации вы-
ше первого, не обеспечивают выполнения принципа максимума. Связано это
с тем, что они не сохраняют монотонность функции.

Говорят, что схема сохраняет монотонность функции, если для любой воз-
растающей (убывающей) функции {𝑓𝑛𝑖 }, последовательность {𝑓𝑛+1

𝑖 } также
возрастает (убывает). Оказалось, что свойство сохранения монотонности од-
нозначно связано с другим свойством, более удобным для определения, на-
зываемым убыванием полной вариации функции.
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Полной вариацией функции называют величину

TV[𝑓 ] =

∫︁ ⃒⃒⃒⃒
𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
𝑑𝑥 (7.20)

Или в случае аппроксимирующей последовательности {𝑓𝑛𝑖 }:

TV[𝑓 ] =
∑︁

|𝑓𝑖 − 𝑓𝑖−1| (7.21)

Говорят, что схема обеспечивает убывание полной вариации, если

TV
[︀
𝑓𝑛+1

]︀
≤ TV [𝑓𝑛] (7.22)

Для обеспечения убывания полной вариации вводят так называемые огра-
ничители потока, которые модифицируют величину потока на отдельных
границах, на которых может возникнуть нарушение принципа сохранения
монотонности.

7.3. Ограничители потока

Как правило, ограничители потока переключают схему более высокого по-
рядка на схему первого порядка при выполнении некоторого условия. Наи-
большую опасность представляют точки, в которых градиент функции тер-
пит значительный скачок.

Формально решение задачи Римана с ограничителем потока можно запи-
сать в следующем виде:

ΦRiemann(𝑓𝑖−1, 𝑓𝑖) = Φ
(︁
𝑓𝑖− 1

2

)︁
, (7.23)

где 𝑓𝑖− 1
2

— аппроксимация значения 𝑓
(︁
𝑥𝑖− 1

2

)︁
, точность которой варьируется

в зависимости от величины локального скачка конечной разности |𝑓𝑖 − 𝑓𝑖−1|.
Для введённых выше константной и кусочно-линейной центрально-взвешенной
аппроксимаций выбор осуществляется следующим образом:

𝑓𝑖− 1
2
=

⎧⎪⎪⎨⎪⎪⎩
𝑓𝑖−1 + 𝜑(𝑟𝑖−1)

𝑓𝑖 − 𝑓𝑖−1

2
⇐⇒ 𝜕Φ

𝜕𝑓
> 0

𝑓𝑖 − 𝜑(𝑟𝑖)
𝑓𝑖 − 𝑓𝑖−1

2
⇐⇒ 𝜕Φ

𝜕𝑓
< 0

(7.24)

Функция 𝜑(𝑟) называется ограничителем потока. Она зависит от относитель-
ной величины перепада функции слева и справа от рассматриваемого объёма:

𝑟𝑖 =
𝑓𝑖 − 𝑓𝑖−1

𝑓𝑖+1 − 𝑓𝑖
(7.25)
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При этом, как правило, требуют, чтобы в отсутствии скачка градиента 𝜑(1) =
1, что соответствует выбору аппроксимации высокого порядка, а при его мак-
симальном относительном скачке 𝜑(0) = 0 и 𝜑(+∞) = 2, что соответствует
выбору аппроксимации 1-го порядка. Для остальных значений 𝑟 выбирается
некоторое промежуточное значение. При этом было показано, что для того,
чтобы схема 2-го порядка точности обеспечивала убывание полной вариации,
ограничитель потока должен удовлетворять следующим свойствам:

𝑟 ≤ 𝜑(𝑟) ≤ 2𝑟 ⇐⇒ 0 ≤ 𝑟 ≤ 1 (7.26)
1 ≤ 𝜑(𝑟) ≤ 𝑟 ⇐⇒ 1 ≤ 𝑟 ≤ 2 (7.27)
1 ≤ 𝜑(𝑟) ≤ 2 ⇐⇒ 𝑟 ≥ 2 (7.28)

Дополнительно часто требуют, чтобы ограничитель потока был симметрич-
ным, то есть при замене скачка градиента на противоположный по знаку
поток не менялся. Математически это приводит к требованию:

𝜑(𝑟)

𝑟
= 𝜑

(︂
1

𝑟

)︂
(7.29)

Приведём несколько примеров используемых на практике ограничителей.
Один из первых ограничителей был предложен ван Леером, носит его имя и
имеет вид

𝜑(𝑟) =
𝑟 + |𝑟|
1 + |𝑟|

(7.30)

Другим популярным вариантом, также предложенным ван Леером, является
монотонизированная центрально-взвешенная схема:

𝜑(𝑟) = max

(︂
0,min

(︂
2𝑟,

1 + 𝑟

2
, 2

)︂)︂
(7.31)

Для гидродинамических уравнений хорошие результаты показывает также
ограничитель потока minmod :

𝜑(𝑟) = max(0,min(1, 𝑟)) (7.32)

Ограничители потока обеспечивают выполнение принципа максимума, а
также подавляют спорадические численные осцилляции, возникающие вбли-
зи сильных скачков градиента функции. При этом ограничитель понижает
точность схемы, и вносит свою ошибку, в частности, увеличивая диффузи-
онность схемы. По этой причине универсального ограничителя потока, кото-
рый давал бы одинаково хороший результат на всех возможных задачах, не
существует. Для каждой отдельной задачи следует проводить тестирование
различных ограничителей для выбора оптимального.
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Рис. 7.2. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью методом Годунова для случая синусоидального начального распределения.
Сверху приведено изначальное распределение и распределение, полученное численно с
применением аппроксимаций функции 1-го и 2-го порядков точности, а также с примене-
нием ограничителей потока ван Леера. Снизу показана абсолютная ошибка полученных
численно решений по отношению к точному решению

В конце отметим также, что, как и разностные схемы, схема Годунова для
устойчивости требует выполнения условия Куранта. Как правило, это усло-
вие является также и достаточным, однако при использовании более сложных
аппроксимаций это может быть и не так.

Примеры численного решения одномерного уравнения адвекции с посто-
янной скоростью методом Годунова для синусоидального начального распре-
деления приведены на Рис. 7.2. Видим, что величина ошибки этих методов
в данном случае сравнима с величиной ошибки конечно-разностных мето-
дов (см. Рис. 5.1), при этом схема 1-го порядка точности вносит диссипа-
цию (амплитуда распространяющегося возмущения уменьшается), а схема
2-го порядка без ограничителя наоборот приводит к нарушению принципа
максимума и повышает амплитуду возмущения. Добавление ограничителя
обеспечивает выполнение принципа максимума, однако искажает форму воз-
мущения.

Преимущества схемы с ограничителями более явно проявляются при воз-
мущениях на фоне нулевого уровня. Например, на Рис. 7.3 приведены приме-
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Рис. 7.3. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью методом Годунова для случая начального распределения в виде гауссовой функ-
ции. Сверху приведено изначальное распределение и распределение, полученное численно
с применением аппроксимаций функции 1-го и 2-го порядков точности, с применением
ограничителей потока ван Леера, а также точное решение. Снизу показана абсолютная
ошибка полученных численно решений по отношению к точному решению

ры численных расчётов методом Годунова для гауссового начального распре-
деления. Видим, что величина ошибки в этом случае для всех использован-
ных аппроксимаций сравнимы. При этом схема 1-го порядка точности при-
водит к сильной диссипации и диффузии возмущения, а схема 2-го порядка
— к появлению областей с отрицательным значение функции распределения.
Схема с ограничителем при этом выступают в роли компромисса: она с одной
стороны обеспечивает неотрицательность функции распределения, а с другой
хотя и модифицирует изначальное распределение, но наблюдаемая диффу-
зия значительно меньше, чем для чистой схемы 1-го порядка. При этом и
амплитуда абсолютной ошибки оказывается наименьшей.
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Глава 8

Методы, основанные на интегрировании
характеристик

8.1. Полулагранжев метод

Дифференциальные уравнения гиперболического типа первого порядка
допускают применение также специфических для этого типа уравнений мето-
дов, основанных на интегрировании уравнений характеристик. Полный пере-
ход к описанию эволюции методом характеристик принято называть лагран-
жевым методом, поскольку он эквивалентен описанию системы в лагранже-
вых координатах, то есть слежению за частицами жидкости. Однако пол-
ностью лагранжевые численные методы сталкиваются с рядом трудностей.
Во-первых, часто требуется стыковать интегрируемое уравнение с другими
уравнениями, например, для электромагнитного поля, которые заданы в эй-
леровых координатах, таким образом, требуется вычислять плотность и токи
в эйлеровых координатах, а перерасчёт лагранжевых координат в эйлеровы
трудозатратен. А во-вторых, часто эволюция жидкости приводит к её закру-
чиванию или в случае кинетических уравнений филаментации, что в свою
очередь приводит к сильному искажению сетки в лагранжевых координа-
тах вплоть до самопересечения граней сетки и необходимости вводить новую
сетку. По этой причине более широкое распространение получил гибридный
подход, который принято называть полулагранжевым.

В полулагранжевых методах на каждой итерации значения функции опре-
делены на сетке в эйлеровых координатах, однако для их вычисления на
следующей итерации используется лагранжев подход, эквивалентный инте-
грированию характеристик уравнения.

Рассмотрим бесстолкновительное кинетическое уравнение в общем виде:

𝜕𝑓

𝜕𝑡
+A(𝑡,x) · ∇x𝑓 = 0 (8.1)
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Характеристики этого уравнения являются решением семейства уравнений:

𝑑X

𝑑𝑡
= A(𝑡,X) (8.2)

X(𝑡 = 𝑠) = x

При этом значение функции 𝑓 вдоль характеристик сохраняется:

𝑑

𝑑𝑡
𝑓(𝑡,X(𝑡)) =

𝜕𝑓

𝜕𝑡
+
𝑑X

𝑑𝑡
· ∇X𝑓 ≡ 𝜕𝑓

𝜕𝑡
+A(𝑡,X) · ∇X𝑓 = 0 (8.3)

Таким образом, если известна характеристика и значение функции в момент
времени 𝑡 = 𝑠, то можно получить её значение и в любой другой момент
времени:

𝑓(𝑡,X(𝑡; 𝑠,x)) = 𝑓(𝑠,X(𝑠; 𝑠,x)) = 𝑓(𝑠,x) (8.4)

Рассмотрим, как это свойство используется в классической реализации
полулагранжева метода на примере одномерного уравнения адвекции:

𝜕𝑓

𝜕𝑡
+ 𝑣(𝑥, 𝑡)

𝜕𝑓

𝜕𝑥
= 0 (8.5)

Введём сетку:
{𝑥𝑖}𝑖=1...𝑁 (8.6)

Пусть известны значения функции в вершинах сетки в момент времени 𝑡𝑛:

𝑓𝑛𝑖 ≡ 𝑓(𝑡𝑛, 𝑥𝑖) (8.7)

Чтобы определить значения функции 𝑓 в вершинах сетки в момент време-
ни 𝑡𝑛+1, найдём характеристики, проходящие через точки 𝑥𝑖 в этот момент
времени, то есть решим уравнения:

𝑑𝑋

𝑑𝑡
= 𝑣(𝑡,𝑋) (8.8)

с начальными условиями вида

𝑋(𝑡𝑛+1) = 𝑥𝑖 (8.9)

И для каждой полученной характеристики определим значение в момент вре-
мени 𝑡𝑛:

𝑋𝑖 = 𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖) (8.10)

Интерполируем тем или иным способом функцию 𝑓(𝑡, 𝑥) в момент времени
𝑡𝑛 по её значениям в вершинах сетки и определим её значения в точках 𝑋𝑖.
Тогда согласно свойству характеристик:

𝑓𝑛+1
𝑖 ≡ 𝑓(𝑡𝑛+1, 𝑥𝑖) = 𝑓(𝑡𝑛, 𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖)) ≡ 𝑓(𝑡𝑛, 𝑋𝑖) (8.11)
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Свойства полулагранжевого метода существенно зависят от выбранного
метода интерполяции. Простейшей является линейная интерполяция, в кото-
рой значение функции в точке 𝑋𝑖 определяется как средне взвешенное зна-
чение в двух ближайших точках сетки. Такая схема, однако, оказывается
чрезмерно диффузной и, кроме того, не использует в полной мере преиму-
щество метода характеристик, поскольку сводится к некоторой разностной
схеме.

Наиболее распространённым методом интерполяции, который с одной сто-
роны относительно прост, а с другой обеспечивает относительно высокую
точность и низкую численную диффузию, является применение кубических
B-сплайнов.

Кубическим B-сплайном называют функцию, составленную из полиномов
третьей степени, коэффициенты которых подобраны так, что функция в це-
лом всюду непрерывна вместе с первой и второй производными и при этом
проходит через заданный набор точек. Математически функция представля-
ется в виде:

𝑓CBS =
𝑁∑︁
𝑗=0

𝑎𝑗𝑆
3(𝑥− 𝑥𝑗), (8.12)

где кубические сплайны 𝑆3 задаются следующим образом:

𝑆3(𝑥) =
1

6

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
4− 6

(︂
|𝑥|
Δ𝑥

)︂2

+ 3

(︂
|𝑥|
Δ𝑥

)︂3

⇐⇒ 0 ≤ |𝑥| ≤ Δ𝑥(︂
2− |𝑥|

Δ𝑥

)︂3

⇐⇒ Δ𝑥 ≤ |𝑥| ≤ 2Δ𝑥

0 ⇐⇒ |𝑥| ≥ 2Δ𝑥

(8.13)

Величина Δ𝑥 = 𝑥𝑖+1 − 𝑥𝑖 здесь соответствует шагу сетки, который для про-
стоты считается постоянным, однако метод может быть обобщён и на случай
неравномерной сетки.

Коэффициенты 𝑎𝑗 находятся из условия прохождения сплайнов через из-
вестные значения функции в точках сетки:

𝑓𝑖 ≡ 𝑓(𝑥𝑖) = 𝑓CBS(𝑥𝑖) =
𝑁∑︁
𝑖=0

𝑎𝑗𝑆
3(𝑥𝑖 − 𝑥𝑗), (8.14)

Эти условия приводят к линейной системе 𝑁 + 1 алгебраических уравнений,
которая может быть решена численно.

Полулагранжевый метод допускает простое обобщение на многомерный
случай: в этом случае уравнения для характеристик становятся системой
уравнений, и вместо кубических сплайнов следует применять методы ин-
терполяции в многомерном пространстве. Порядок точности метода по вре-
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мени определяется порядком точности интегрирования уравнений характе-
ристик. В случае зависимости скорости адвекции от значения функции 𝑓 ,
повысить порядок точности можно за счёт использования схемы предиктор-
корректора. Одно из достоинств метода: для его стабильности не требуется
выполнения условия Куранта, однако требуется выполнение, как правило,
более слабого условия |(𝜕𝑣/𝜕𝑥)Δ𝑡| < 1. В частности, в случае постоянной
скорости адвекции величина шага по времени может и вовсе быть любой.
Можно также показать, что классический метод для линейного уравнения
сохраняет число частиц, однако в более сложных вариантах это уже может
быть не так.

К проблемам полулагранжевого метода относится также невыполнение в
общем случае принципа максимума. Его можно, однако, обеспечить выбором
схемы интерполяции, в которой интерполируемое значение никогда не превы-
шает значения функции в точках сетки. Наконец, при использовании сплай-
нов возникает проблема с вычислительной сложностью, поскольку задача
поисков коэффициентов разложения является нелокальной, то есть требует
знания о значении функции во всех точках сетки одновременно. Поскольку
для повышения скорости вычислений используются вычислительные систе-
мы с распределённой памятью, на локальном вычислительном узле могут
быть известны значения функция только в ограниченном количестве точек
сетки, что понижает точность построения сплайна и нивелирует его преиму-
щества.

8.2. Консервативный полулагранжевый метод

Чтобы решить проблему точного выполнения законов сохранения, прин-
ципа максимума и исключить нелокальные операции был предложен консер-
вативный полулагранжевый метод, объединяющий идеи методов конечных
объёмов и полугранжевого метода.

Консервативный полулагранжевый метод строится аналогично методам
конечных объёмов. Зададим сетку:

{𝑥𝑖}𝑖=1...𝑁 (8.15)

и будем аппроксимировать функцию средним значением по некоторому ко-
нечному объёму, окружающему каждую точку сетки:

𝑓𝑛𝑖 ≡ 1

𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2

𝑥
𝑖+1

2∫︁
𝑥
𝑖− 1

2

𝑓(𝑡𝑛, 𝑥)𝑑𝑥, (8.16)
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где

𝑥𝑖+ 1
2
≡ 𝑥𝑖+1 + 𝑥𝑖

2
(8.17)

𝑥𝑖− 1
2
≡ 𝑥𝑖 + 𝑥𝑖−1

2
(8.18)

Тогда для дивергентной формы уравнения адвекции, проинтегрированной
по каждому конечному объёму, после применения теоремы Остроградского
— Гаусса получаем:

(︁
𝑥𝑖+ 1

2
− 𝑥𝑖− 1

2

)︁ d𝑓𝑖
d𝑡

+ Φ𝑖+ 1
2
(𝑡)− Φ𝑖− 1

2
(𝑡) = 0, (8.19)

где Φ ≡ 𝑣𝑓 — поток, и по определению

Φ𝑖+ 1
2
(𝑡) ≡ Φ(𝑡, 𝑥𝑖+ 1

2
) (8.20)

Φ𝑖− 1
2
(𝑡) ≡ Φ(𝑡, 𝑥𝑖− 1

2
) (8.21)

В отличии от схемы Годунова, однако, для вычисления потоков восполь-
зуемся решением уравнений характеристик для точек, соответствующих гра-
ницам конечных объёмов:

𝑑𝑋

𝑑𝑡
= 𝑣(𝑡,𝑋) (8.22)

𝑋(𝑡𝑛+1) = 𝑥𝑖− 1
2

Обозначим:

𝑋𝑖− 1
2
≡ 𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖− 1

2
), (8.23)

тогда интегральный поток через соответствующую границу может быть опре-
делён следующим образом:

𝑡𝑛+1∫︁
𝑡𝑛

Φ𝑖− 1
2
𝑑𝑡 =

𝑥
𝑖− 1

2∫︁
𝑋

𝑖− 1
2

𝑓(𝑥, 𝑡𝑛)𝑑𝑥 (8.24)

Для вычисления интеграла осталось только аппроксимировать функцию 𝑓

внутри 𝑖-го объёма. Для обеспечения второго порядка точности и низкой чис-
ленной диффузии схемы будем аппроксимировать функцию квадратичным
многочленом 𝑓ℎ для вычисления коэффициентов которого будем использо-
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вать следующие уравнения:
𝑥
𝑖− 1

2∫︁
𝑥
𝑖− 3

2

𝑓ℎ(𝑥)d𝑥 = 𝑓𝑖−1 (8.25)

𝑥
𝑖+1

2∫︁
𝑥
𝑖− 1

2

𝑓ℎ(𝑥)d𝑥 = 𝑓𝑖 (8.26)

𝑥
𝑖+3

2∫︁
𝑥
𝑖+1

2

𝑓ℎ(𝑥)d𝑥 = 𝑓𝑖+1 (8.27)

В результате получаем следующую аппроксимацию:

𝑓ℎ(𝑥) = 𝑓𝑖 +
1

6Δ𝑥2
[2(𝑥− 𝑥𝑖)(𝑥− 𝑥𝑖 + 3Δ𝑥/2) +

+ (𝑥− 𝑥𝑖 +Δ𝑥/2)(𝑥− 𝑥𝑖 −Δ𝑥/2)] (𝑓𝑖+1 − 𝑓𝑖)−

− 1

6Δ𝑥2
[2(𝑥− 𝑥𝑖)(𝑥− 𝑥𝑖 − 3Δ𝑥/2) +

+ (𝑥− 𝑥𝑖 +Δ𝑥/2)(𝑥− 𝑥𝑖 −Δ𝑥/2)] (𝑓𝑖 − 𝑓𝑖−1), (8.28)

где Δ𝑥 ≡ 𝑥𝑖+1 − 𝑥𝑖 — шаг сетки, считающийся для простоты постоянным.
Для обеспечения принципа максимума аналогично методам конечных объ-

ёмов воспользуемся ограничителями потока. Для этого в уравнении (8.28)
сделаем замены:

(𝑓𝑖+1 − 𝑓𝑖) → 2𝜑(𝑟𝑖)(𝑓𝑖+1 − 𝑓𝑖) (8.29)
(𝑓𝑖 − 𝑓𝑖−1) → 2𝜑(𝑟𝑖−1)(𝑓𝑖 − 𝑓𝑖−1), (8.30)

где функция 𝜑(𝑟) введена аналогично уравнению (7.24) и

𝑟𝑖 =
𝑓𝑖 − 𝑓𝑖−1

𝑓𝑖+1 − 𝑓𝑖
(8.31)

В результате получаем:

𝑓𝑛+1
𝑖 = 𝑓𝑛𝑖 − 1

𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2

𝑡𝑛+1∫︁
𝑡𝑛

(︁
Φ𝑖+ 1

2
− Φ𝑖− 1

2

)︁
𝑑𝑡 ≈

≈ 𝑓𝑛𝑖 − 1

Δ𝑥

𝑥
𝑖− 1

2∫︁
𝑋

𝑖− 1
2

𝑓ℎ(𝑥, 𝑡
𝑛)𝑑𝑥 (8.32)
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Рис. 8.1. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью полулагранжевыми методами для случая синусоидального начального распре-
деления. Сверху приведено изначальное распределение и распределения, полученные чис-
ленно. Снизу показана абсолютная ошибка полученных численно решений по отношению
к точному решению

Если скорость постоянна, то 𝑋𝑖− 1
2
= 𝑥𝑖− 1

2
− 𝑣Δ𝑡, где Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 — шаг по

времени. В этом случае интеграл можно вычислить в явном виде:

𝑓𝑛+1
𝑖 = 𝑓𝑛𝑖 − 𝑣Δ𝑡

Δ𝑥

[︂
𝑓𝑖 +

𝜑(𝑟𝑖)

3

(︂
1− 𝑣Δ𝑡

Δ𝑥

)︂(︂
2− 𝑣Δ𝑡

Δ𝑥

)︂
(𝑓𝑖+1 − 𝑓𝑖)−

− 𝜑(𝑟𝑖−1)

3

(︂
1− 𝑣Δ𝑡

Δ𝑥

)︂(︂
1 +

𝑣Δ𝑡

Δ𝑥

)︂
(𝑓𝑖 − 𝑓𝑖−1)

]︂
(8.33)

Примеры численного решения одномерного уравнения адвекции с посто-
янной скоростью обычным и консервативным полулагранжевыми методами
для синусоидального возмущения приведены на Рис. 8.1. Видим, что точность
консервативного полулагранжевого метода сравнима с точностью конечно-
разностного метода 2-го порядка (см. Рис. 5.1), а точность обычного полу-
лугранжевого метода и вовсе выше (на графике не видно, но абсолютная
ошибка составляет порядка 10−8–10−7).

Для гауссового начального распределения результаты численного модели-
рования показаны на Рис. 8.2. Снова видим, что точность консервативного
полулагранжевого метода сравнима с точностью конечно-разностного мето-
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Рис. 8.2. Результат численного решения одномерного уравнения адвекции с постоянной
скоростью полулагранжевыми методами для случая синусоидального начального распре-
деления. Сверху приведено изначальное распределение и распределения, полученные чис-
ленно. Снизу показана абсолютная ошибка полученных численно решений по отношению
к точному решению

да 2-го порядка (см. Рис. 5.2), а точность обычного полулагранжевого метода
ещё выше (абсолютная ошибка составляет порядка 10−3 в данном случае).

Более аккуратное изучение решений, однако, показывает, что в некото-
рых точках решение обычным полулагранжевым методом оказывается от-
рицательным с абсолютной величиной ≈ −10−10. Хотя эта величина мала,
она может быть больше при других начальных условиях и другом выбо-
ре параметров моделирования, а также может приводить к численным про-
блемам, если предполагается, что функция распределения должна быть га-
рантированно неотрицательной, как, например, при вычислении энтропии:
𝑆 =

∑︀
𝑖 𝑓𝑖 ln 𝑓𝑖Δ𝑥.
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Глава 9

Метод частиц в ячейках

9.1. Форм-фактор частиц и процедура взвешивания

Рассмотренные выше методы численного решения кинетических уравне-
ний так или иначе основаны на задании неизвестной функции на сетке, при
этом размер сетки с ростом размерности пространства растёт экспоненциаль-
но. Например, если по каждой координате количество точек сетки равняется
100, то общее количество точек в 6-мерном пространстве будет равняться
1006 = 1012, что даже при размере 4 байта на точку (что соответствует, на-
пример, типу float в языке Си — наиболее короткому, и потому неточному,
представлению числа с плавающей точкой) требует объём оперативной памя-
ти в 4 терабайта, что достижимо только на больших суперкомпьютерах. Бо-
лее реалистичные требования к размеру сетки и хранимым данным приводят
к необходимости иметь десятки и сотни терабайт памяти, что практически
неосуществимо.

По этой причине полномасштабное трёхмерное моделирование кинетиче-
ских уравнений сеточными методами оказывается на практике неосуществи-
мым. Оказалось, однако, что во многих случаях приемлемой точности вы-
числений можно достичь методами, основанными на описании плазмы как
совокупности частиц. Наиболее успешным среди них оказался метод частиц
в ячейках (Particle-In-Cell, PIC ).

В простейшем случае метод частиц в ячейках основан на представлении
функции распределения в виде взвешенной суммы 𝑁 дельта-функций (см.
Рис. 9.1 (а, б)):

𝑓(𝑡, 𝑟⃗, 𝑝) =
𝑁∑︁
𝑘=1

𝑤𝑘𝛿(𝑟⃗ − 𝑟⃗𝑘)𝛿(𝑝− 𝑝𝑘), (9.1)

где 𝑟⃗𝑘, 𝑝𝑘 отвечают положению и импульсу 𝑘-й частицы, а 𝑤𝑘 определяет её
относительный вклад (вес) в распределение. Поскольку количество реальных
частиц в моделируемой системе, как правило, огромно — порядка числа Аво-
гадро — то в моделировании следят за движением только ограниченного их
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Рис. 9.1. (а) Пример аппроксимируемой функции распределения. (б) Аппроксимация при
помощи 2000 случайно расположенных частиц, имеющих дельта-образный профиль. (в)
Аппроксимация при помощи 2000 случайно расположенных частиц, имеющих кубический
профиль

числа, считая, что каждая из моделируемых частиц отвечает усреднённому
движению какого-то множества реальных частиц. Частицы, за движением
которых следят в расчёте, называют макрочастицами, а 𝑤𝑘 в этом случае
имеет смысл количества реальных частиц, усреднённое движение которых
моделируется движением 𝑘-й макрочастицы.

Представление функции распределения в виде суммы дельта-функций, од-
нако, приводит к скачкам плотности заряда и тока при пересечении макро-
частицами точек сетки, на которой определены электромагнитные поля. В
связи с этим на практике для функции распределения производится опера-
ция регуляризации, аналогичная интерполяции её значений в пространстве
между точками положения частиц. Эта процедура носит названия взвешива-
ния.

Для взвешивания частиц принято применять полиномы различной степе-
ни. При этом для достижения наибольшей гладкости результирующих рас-
пределений в качестве таких полиномов используют B-сплайны. Чаще всего
используются сплайн 0-го порядка:

𝑆0(𝑥) =
1

Δ𝑥

⎧⎪⎨⎪⎩
1 ⇐⇒ |𝑥| ≤ Δ𝑥

2
,

0 ⇐⇒ |𝑥| > Δ𝑥

2
,

(9.2)

сплайн 1-го порядка:

𝑆1(𝑥) =
1

Δ𝑥

⎧⎨⎩1− |𝑥|
Δ𝑥

⇐⇒ |𝑥| ≤ Δ𝑥,

0 ⇐⇒ |𝑥| > Δ𝑥,
(9.3)
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Рис. 9.2. Форм-факторы частиц, определяемые B-сплайнами различных порядков

или реже сплайн 2-го порядка:

𝑆2(𝑥) =
1

Δ𝑥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3

4
−
(︂
|𝑥|
Δ𝑥

)︂2

⇐⇒ |𝑥| ≤ Δ𝑥

2
,

1

2

(︂
3

2
− |𝑥|

Δ𝑥

)︂2

⇐⇒ Δ𝑥

2
< |𝑥| ≤ 3Δ𝑥

2
,

0 ⇐⇒ |𝑥| > 3Δ𝑥

2

(9.4)

Графическое изображение этих функций приведено на Рис. 9.2.
Встречается также применение сплайнов более высокого порядка, выра-

жения для которых можно получить из следующего рекуррентного соотно-
шения:

𝑆𝑚(𝑥) =
1

Δ𝑥

𝑥+Δ𝑥/2∫︁
𝑥−Δ𝑥/2

𝑆𝑚−1(𝑦)𝑑𝑦 (9.5)

В этих выражения Δ𝑥 — шаг сетки, на которой требуется определение взве-
шенных величин. Как правило, он диктуется схемой интегрирования элек-
тромагнитных полей.

Значение плотности заряда в некоторой точке пространства определяет-
ся путём свёртки сплайнов по пространственным координатам с функцией

78



распределения:

𝜌(𝑡, 𝑟⃗) = 𝑞

∫︁
𝑝

∫︁
𝑠⃗

𝑆 (𝑟⃗ − 𝑠⃗) 𝑓(𝑡, 𝑠⃗, 𝑝)𝑑𝑠⃗𝑑𝑝 = 𝑞
∑︁
𝑘

𝑤𝑘𝑆(𝑟⃗ − 𝑟⃗𝑘) (9.6)

Здесь по определению:
𝑆(𝑟⃗) ≡ 𝑆(𝑥)𝑆(𝑦)𝑆(𝑧) (9.7)

Из выражения для плотности заряда видно, что функция 𝑆(𝑟⃗) имеет также
смысл распределения заряда отдельной частицы в пространстве, и поэтому
её также часто называют форм-фактором частицы. Можно, таким образом,
считать, что при использовании форм-фактора функция распределения ап-
проксимируется кусочками кубической формы, как изображено на Рис. 9.1
(в). По этой причине использование сплайна 0-го порядка называют схемой
с кубическими частицами или схемой облака в ячейке (Cloud in cell, CIC ),
а сплайна 1-го — схемой с облаками треугольной формы (Triangular shaped
cloud, TSC ).

Аналогично можно найти и величину плотности заряда в произвольной
точке пространства:

𝑗⃗(𝑡, 𝑟⃗) = 𝑞

∫︁
𝑝

∫︁
𝑠⃗

𝑣⃗𝑆 (𝑟⃗ − 𝑠⃗) 𝑓(𝑡, 𝑠⃗, 𝑝)𝑑𝑠⃗𝑑𝑝 = 𝑞
∑︁
𝑘

𝑤𝑘𝑣⃗𝑘𝑆(𝑟⃗ − 𝑟⃗𝑘) (9.8)

Использование сплайнов более высокого порядка уменьшает величину шу-
мов в моделировании и повышает устойчивость схемы, однако увеличива-
ет время вычислений и нелокальность метода, поскольку чем выше степень
сплайна, тем больше размер результирующего форм-фактора в пространстве.

9.2. Интегрирование уравнений движения методом Бо-
риса

Эволюция функции распределения во времени в методе частиц в ячей-
ках осуществляется путём решения уравнений движения для макрочастиц,
эквивалентное поиску характеристик кинетического уравнения:

𝑑𝑟⃗

𝑑𝑡
=

𝑝

𝛾𝑚
(9.9)

𝑑𝑝

𝑑𝑡
= 𝑞

(︂
𝐸⃗ +

[︂
𝑝

𝛾𝑚𝑐
× 𝐵⃗

]︂)︂
(9.10)

𝛾 =

√︃
1 +

𝑝2

(𝑚𝑐)2
(9.11)
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При численном решении этих уравнений требуется удовлетворить двум ос-
новным требованиям: схема интегрирования должна иметь второй порядок
по времени, и должна быть устроена таким образом, чтобы работа магнит-
ного поля всегда равнялась нулю. Этого удаётся достичь с использованием
схемы интегрирования Бо́риса. В этой схеме предполагается, что положение
частиц и их импульсы определены со сдвигом на полшага по времени: если ко-
ординаты частиц заданы в моменты времени 𝑡𝑛, 𝑛 = 0, 1, . . . , то их импульсы
определяются в моменты времени 𝑡𝑛+1/2 = (𝑡𝑛+1 + 𝑡𝑛)/2. Схема Бориса тогда
аппроксимирует уравнения движения следующим образом:

𝑟⃗ 𝑛+1 − 𝑟⃗ 𝑛

ℎ
=

𝑝 𝑛+1/2

𝛾𝑛+1/2𝑚
(9.12)

𝑝 𝑛+1/2 − 𝑝 𝑛−1/2

ℎ
= 𝑞

(︃
𝐸⃗𝑛 +

[︃
𝑝 𝑛+1/2 + 𝑝 𝑛−1/2

2𝛾𝑛𝑚𝑐
× 𝐵⃗𝑛

]︃)︃
, (9.13)

где ℎ = 𝑡𝑛+1 − 𝑡𝑛 — шаг по времени. Второе из этих уравнений, однако,
записано в неявном виде, поскольку 𝑝 𝑛+1/2 в нём присутствует и в правой, и
в левой части. В явном виде эта схема может быть представлена следующим
образом:

𝑝− = 𝑝 𝑛−1/2 +
𝑞ℎ

2
𝐸⃗𝑛 (9.14)

𝛾𝑛 =

√︃
1 +

(︂
𝑝−

𝑚𝑐

)︂2

(9.15)

𝑝 ′ = 𝑝− +
𝑞ℎ

2𝛾𝑛𝑚𝑐

[︁
𝑝− × 𝐵⃗𝑛

]︁
(9.16)

𝑝+ = 𝑝− +
𝑞ℎ

𝛾𝑛
(︂
1 +

(︁
𝑞ℎ𝐵𝑛

2𝛾𝑛𝑚𝑐

)︁2)︂ [︁𝑝 ′ × 𝐵⃗𝑛
]︁

(9.17)

𝑝 𝑛+1/2 = 𝑝+ +
𝑞ℎ

2
𝐸⃗𝑛 (9.18)

В этой форме угадывается разделение операторов методом Стрэнга: сначала
вычисляется ускорение полем 𝐸⃗ за время ℎ/2, затем поворот в магнитном по-
ле за время ℎ, а затем снова ускорение полем 𝐸⃗ за время ℎ/2. Для поворота
в магнитном поле при этом используется схема типа предиктор-корректора,
с поправкой к углу поворота в виде множителя

(︁
1 + (𝑞ℎ𝐵𝑛/2𝛾𝑛𝑚𝑐)2

)︁−1
, ко-

торая и обеспечивает точное равенство нулю работы магнитного поля.
При интегрировании уравнений движения надо знать поля в точке распо-

ложения заряда 𝑟⃗𝑘. Для их определения используют интерполяцию, которая
должна быть согласована с методом взвешивания частиц для исключения
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проблемы самовоздействия частиц. Таким образом, поля определяются по
формулам:

𝐸⃗𝑛(𝑟⃗𝑘) =
∑︁
𝑗

𝐸⃗𝑗(𝑡
𝑛)𝑆(𝑟⃗𝑘 − 𝑟⃗𝑗) (9.19)

𝐵⃗𝑛(𝑟⃗𝑘) =
∑︁
𝑗

𝐵⃗𝑗(𝑡
𝑛)𝑆(𝑟⃗𝑘 − 𝑟⃗𝑗), (9.20)

где суммирование производится по всем точкам сетки, но ненулевой вклад
дают только несколько ближайших к положению частицы, и функции взве-
шивания 𝑆(𝑟⃗) в точности совпадают со сплайнами, использованными для
взвешивания частиц.

Метод частиц в ячейках в точности сохраняет число частиц, а также в
случае согласованного использования методов взвешивания частиц и интер-
поляции полей — импульс. Метод можно также немного усложнить, чтобы
выполнялось точно сохранение энергии. По умолчанию, однако, метод не удо-
влетворяет уравнению Пуассона, из-за чего в ходе расчёта могут возникать
существенные искусственные электростатические поля. Эта проблема реша-
ется применением более изощрённых методов интегрирования движения ча-
стиц и согласованных решателей для электромагнитного поля. Метод устой-
чив при выполнении условия Куранта, однако дополнительно требует также,
чтобы размер радиуса Дебая был достаточно большим: при использовании
1-го порядка интерполяции он должен быть, как минимум, порядка шага по
сетке, однако каждое увеличение порядка интерполяции на единицу умень-
шает это требование в несколько раз.

Главным преимуществом метода частиц в ячейках является его вычисли-
тельная эффективность, связанная с тем, что поведение системы, как пра-
вило, определяется значением функции распределения в узкой области фа-
зового пространства, что делает сеточные методы, которые вычисляют её
эволюцию сразу во всём 6-мерном пространстве, неэффективными. В методе
частиц в ячейках частицы можно задать только в области фазового про-
странства, где число частиц велико, что экономит вычислительные ресурсы.
В результате там, где сеточным методам требуется порядка 1012 точек сетки,
метод частиц в ячейках может работать с порядка 108–109 частиц, что вполне
осуществимо на современных суперкомпьютерах. Это привело к повсеместно-
му использованию этого метода в самых разных задачах физики плазмы от
взаимодействия солнечного ветра с магнитосферой Земли до лабораторного
взаимодействия интенсивного лазерного излучения с веществом.
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Глава 10

Методы численного решения уравнений
электродинамики

10.1. Общие сведения

Кинетические уравнения для плазмы требуется, как правило, решать са-
мосогласованным образом с уравнениями электродинамики для полей, ге-
нерируемых самой плазмой. Таким образом, численные схемы для решения
кинетического уравнения следует решать одновременно с уравнениями элек-
тродинамики. При этом требуется решить две основные проблемы: выбрать
схему решения уравнений электродинамики и метод её согласования со схе-
мой решения кинетических уравнений.

В общем случае эволюция электромагнитных полей описывается системой
уравнений Максвелла:

𝜕𝐷⃗

𝜕𝑡
= 𝑐 rot𝐻⃗ − 4𝜋𝑗⃗ (10.1)

𝜕𝐵⃗

𝜕𝑡
= −𝑐 rot𝐸⃗ (10.2)

div𝐷⃗ = 4𝜋𝜌 (10.3)

div𝐵⃗ = 0, (10.4)

где 𝐸⃗, 𝐻⃗ — напряжённости электрического и магнитного полей, 𝐷⃗, 𝐵⃗ — ин-
дукции электрического и магнитного полей, 𝜌, 𝑗⃗ — плотности заряда и тока.
Напряжённости и индукции полей связаны следующим образом:

𝐷⃗ = 𝐸⃗ + 4𝜋𝑃 (10.5)

𝐵⃗ = 𝐻⃗ + 4𝜋𝑀⃗, (10.6)

где 𝑃 , 𝑀⃗ — соответственно вектора поляризации и намагниченности, опреде-
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ляемые плотностью связанных зарядов 𝜌св и их токами 𝑗⃗св:

𝜌св = −div𝑃 (10.7)

𝑗⃗св = 𝑐 rot𝑀⃗ +
𝜕𝑃

𝜕𝑡
(10.8)

Зависимость величин 𝜌св и 𝑗⃗св, и соответственно, 𝑃 и 𝑀⃗ от величины полей
называют материальными уравнениями.

При изучении плазменной кинетики, как правило, плотность заряда со-
ставляющих её электронов и ионов и соответствующие токи не учитываются
в материальных уравнениях, а считаются свободными зарядами и их тока-
ми, явным образом входящими в уравнения Максвелла в виде величин 𝜌 и
𝑗⃗. При этом поляризация и намагниченность плазмы, связанные с неионизи-
рованными электронами, как правило, могут считаться пренебрежимо малы-
ми, и следовательно, можно положить 𝑀⃗ = 𝑃 = 0, и оставить для описания
электромагнитного поля только два вектора: например, напряжённость элек-
трического поля 𝐸⃗ и индукцию магнитного поля 𝐵⃗. В этом случае уравнения
Максвелла примут вид:

𝜕𝐸⃗

𝜕𝑡
= 𝑐 rot𝐵⃗ − 4𝜋𝑗⃗ (10.9)

𝜕𝐵⃗

𝜕𝑡
= −𝑐 rot𝐸⃗ (10.10)

div𝐸⃗ = 4𝜋𝜌 (10.11)

div𝐵⃗ = 0 (10.12)

Напомним также, что не все уравнения Максвелла являются независимы-
ми. Вообще говоря, при задании начальных условий, удовлетворяющих двум
последним уравнениям, и при решении только первой пары, дивергентные
уравнения будут удовлетворяться автоматически во все моменты времени.
Это, однако, в общем случае не так для аппроксимирующих уравнений, пред-
назначенных для численного решения. В этом случае иногда требуется прове-
дение дополнительных действий для точного удовлетворения дивергентным
уравнениям.

Для электромагнитных полей можно ввести векторный 𝐴⃗ и скалярный 𝜙
потенциалы:

𝐸⃗ = −∇𝜙− 1

𝑐
𝐴⃗ (10.13)

𝐵⃗ = rot𝐴⃗, (10.14)

определённые с точностью до произвольной функции 𝜓, так что замена 𝐴⃗′ =
𝐴⃗+∇𝜓, 𝜑′ = 𝜑−1/𝑐(𝜕𝜓/𝜕𝑡) не меняет уравнений Максвелла. Выбор функции

83



𝜓 называется калибровкой. Наиболее популярны калибровка Лоренца:

div𝐴⃗+
1

𝑐

𝜕𝜑

𝜕𝑡
= 0, (10.15)

и калибровка Кулона:
div𝐴⃗ = 0 (10.16)

В случае изучения плазменной динамики калибровка Лоренца удобна тем,
что уравнения Максвелла заменяются волновыми уравнениями для потенци-
алов:

𝜕2𝐴⃗

𝜕𝑡2
− 𝑐2Δ𝐴⃗ = 4𝜋𝑐𝑗 (10.17)

𝜕2𝜙

𝜕𝑡2
− 𝑐2Δ𝜙 = 4𝜋𝑐2𝜌 (10.18)

Это оставляет уравнения волнового типа, локальные в пространстве. При
этом однако, в ходе численного моделирования может нарушиться выполне-
ние уравнения Пуассона, что будет приводить к значительным искусствен-
ным электростатическим полям, ускорению частиц плазмы и её численному
нагреву.

По этой причине иногда удобнее применять калибровку Кулона, в кото-
рой уравнение Пуассона остаётся частью системы уравнений в явном виде.
Уравнение на векторный потенциал, однако, усложняется. В целом уравне-
ния Максвелла в этом случае заменяются следующими уравнениями:

𝜕2𝐴⃗

𝜕𝑡2
− 𝑐2Δ𝐴⃗ = 4𝜋𝑐𝑗 − 𝑐

𝜕

𝜕𝑡
∇𝜙 (10.19)

Δ𝜙 = −4𝜋𝜌 (10.20)

Недостатком такой калибровки является нелокальность уравнения Пуассона,
требующая для вычисления поля в данной точке знания плотности заряда во
всём пространстве.

Главным достоинством перехода к потенциальному описанию полей явля-
ется явный учёт внутренних симметрий уравнений Максвелла, в частности,
калибровочной симметрии, а также вихревого характера магнитного поля
и, в случае кулоновской калибровки, уравнения Пуассона. Недостатком при
этом является необходимость пересчёта потенциалов в поля для вычисления
сил, действующих на частицы плазмы, что добавляет вычислительной слож-
ности. На практике в большинстве случаев численно аппроксимируются два
волновых уравнения для полей, при этом выполнение двух других уравне-
ний обеспечивается выбором схемы интегрирования. Иногда также отдельно
решается уравнение Пуассона для электрического потенциала: это удобнее в
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случае, во-первых, чисто электростатических задач, когда генерацией маг-
нитного поля можно вовсе пренебречь, и во-вторых, в одномерном случае,
в котором продольное электрическое поле не может быть описано волновым
уравнением.

10.2. Решение уравнения Пуассона спектральным мето-
дом Фурье

Рассмотрим уравнение Пуассона для электрического потенциала:

Δ𝜙 = −4𝜋𝜌 (10.21)

Это уравнение параболического типа, для которого решается краевая зада-
ча, то есть это уравнение требуется также дополнить граничными условия-
ми. Как правило, считается, что плазма глобально нейтральна и поэтому её
потенциал на бесконечности спадает достаточно медленно, и следовательно,
выбрав достаточно большую область моделирования, можно положить на её
границе 𝜑 = 0 или воспользоваться периодическими граничными условиями.

Существует несколько подходов к численному решению краевых задач в
целом и уравнений параболического типа в частности. Для уравнения Пуас-
сона наиболее удобным из них является спектральный метод преобразования
Фурье.

Предполагая периодические граничные условия, аппроксимируем функ-
цию 𝜙(𝑟⃗) дискретным рядом Фурье по всем трём координатам:

𝜙(𝑥, 𝑦, 𝑧) = ℱ−1
𝑁 [𝜙] ≡ (10.22)

≡ 1

𝐿𝑥𝐿𝑦𝐿𝑧

𝑁𝑥−1∑︁
𝑚=0

𝑁𝑦−1∑︁
𝑛=0

𝑁𝑧−1∑︁
𝑝=0

𝜙𝑚𝑛𝑝 exp

[︂
−2𝜋𝑖

(︂
𝑚𝑥

𝐿𝑥
+
𝑛𝑦

𝐿𝑦
+
𝑝𝑧

𝐿𝑧

)︂]︂
Числа 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 определяют число учитываемых членов ряда и, соответ-
ственно, точность аппроксимации. Обычно их выбирают равным числу точек
сетки, на которой аппроксимирована плотность заряда. Величины 𝐿𝑥, 𝐿𝑦, 𝐿𝑧

имеют смысл длины интегрируемой области вдоль соответствующих осей. То
же самое преобразование Фурье можно выполнить и для функции 𝜌(𝑟⃗):

𝜌(𝑥, 𝑦, 𝑧) = ℱ−1
𝑁 [𝜌] (10.23)

Коэффициенты Фурье-разложения при этом можно определить численно, ес-
ли значения 𝜌𝑗𝑘𝑙 ≡ 𝜌(𝑥𝑗, 𝑦𝑘, 𝑧𝑙) известны:

𝜌𝑚𝑛𝑝 = ℱ𝑁 [𝜌] ≡
𝑁𝑥−1∑︁
𝑗=0

𝑁𝑦−1∑︁
𝑘=0

𝑁𝑧−1∑︁
𝑙=0

𝜌𝑗𝑘𝑙 exp

[︂
2𝜋𝑖

(︂
𝑚𝑗

𝑁𝑥
+
𝑛𝑘

𝑁𝑦
+

𝑝𝑙

𝑁𝑥

)︂]︂
, (10.24)
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где учтено, что 𝑥𝑗/𝐿𝑥 = 𝑗/𝑁𝑥, 𝑦𝑘/𝐿𝑦 = 𝑘/𝑁𝑦, 𝑧𝑙/𝐿𝑧 = 𝑙/𝑁𝑧.
После подстановки Фурье-преобразования в уравнение Пуассона и прирав-

нивания нулю коэффициентов при отдельных гармониках получаем систему
уравнений вида:

4𝜋2𝜙𝑚𝑛𝑝

(︃
𝑚2

𝐿2
𝑥

+
𝑛2

𝐿2
𝑦

+
𝑝2

𝐿2
𝑧

)︃
= −4𝜋𝜌𝑚𝑛𝑝, (10.25)

откуда находим:

𝜙𝑚𝑛𝑝 = − 𝜌𝑚𝑛𝑝

𝜋
(︁
𝑚2

𝐿2
𝑥
+ 𝑛2

𝐿2
𝑦
+ 𝑝2

𝐿2
𝑧

)︁ (10.26)

Зная теперь коэффициенты 𝜙𝑚𝑛𝑝 и взяв обратное преобразование Фурье, мы
можем найти и значения потенциала 𝜙(𝑟⃗) в произвольных точках простран-
ства.

10.3. Решение уравнений Максвелла методом конечных
разностей во временной области

Рассмотрим теперь методы численного решения уравнений Максвелла.
Для них применимы стандартные методы решения волновых уравнений, то
есть уравнений гиперболического типа. В частности, методы конечных раз-
ностей, спектральные методы, методы конечных элементов, а также после
некоторых преобразований, сводящих уравнения Максвелла к дивергентной
форме, — методы конечных объёмов.

Наибольшую точность, как правило, обеспечивает спектральный метод
Фурье, дополнительным преимуществом которого является отсутствие чис-
ленной дисперсии, то есть зависимости скорости волн от их длины волны.
Недостатком этого метода, однако, является его нелокальность.

Методы конечных элементов обычно применяют в случае, когда взаимо-
действие происходит в сложной системе электродов, аппроксимация поверх-
ностей которых на квадратной сетке затруднена. Недостатком метода явля-
ется его относительно низкая производительность.

На практике поэтому чаще всего применяются методы конечных разно-
стей. Для уравнений Максвелла при этом был предложен специальный ме-
тод, называемый методом конечных разностей во временной области (Finite
Difference in Time Domain, FDTD), отличительной особенностью которого
является выбор сетки, называемой сеткой Йи (в честь впервые предложив-
шего её Kane S. Yee).

Сетка Йи, ячейка которой приведена на Рис. 10.1, представляет собой
несколько однородных подсеток с одинаковыми шагами (Δ𝑥,Δ𝑦,Δ𝑧) (воз-
можно, не равными друг другу), сдвинутых относительно друг другу на по-
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Рис. 10.1. Ячейка сетки Йи, используемая в методе конечных разностей во временной
области

ловину шага по одной или нескольким осям. При этом значения на некоторых
из подсеток определяются в моменты времени, также сдвинутые на полшага
по времени относительно других подсеток. Такая сложная система позволя-
ет записать уравнения Максвелла в конечных разностях с точностью второго
порядка как по координатам, так и по времени, при этом получившаяся чис-
ленная схема оказывается явной.

Чтобы понять, как это достигается, рассмотрим уравнение временной эво-
люции компоненты 𝐸𝑥 в отсутствии внешних токов:

𝜕𝐸𝑥

𝜕𝑡
= 𝑐

𝜕𝐵𝑧

𝜕𝑦
− 𝑐

𝜕𝐵𝑦

𝜕𝑧
(10.27)

Его аппроксимация в FDTD имеет вид:

𝐸𝑥|𝑛+1
𝑖+1/2,𝑗,𝑘 − 𝐸𝑥|𝑛𝑖+1/2,𝑗,𝑘

Δ𝑡
= 𝑐

𝐵𝑧|𝑛+1/2
𝑖+1/2,𝑗+1/2,𝑘 −𝐵𝑧|𝑛+1/2

𝑖+1/2,𝑗−1/2,𝑘

Δ𝑦
−

− 𝑐
𝐵𝑦|𝑛+1/2

𝑖+1/2,𝑗,𝑘+1/2 −𝐵𝑦|𝑛+1/2
𝑖+1/2,𝑗,𝑘−1/2

Δ𝑧
(10.28)

Как видим, все компоненты этого уравнения определены в одной плоскости
𝑥 = 𝑥𝑖+1/2, при этом компоненты поля 𝐵⃗ определены в моменты времени
𝑡𝑛+1/2, а компоненты поля 𝐸⃗ — в моменты времени 𝑡𝑛. Это позволяет исполь-
зовать центрально взвешенную конечную разность по времени 2-го порядка
точности с шагом Δ𝑡. При этом по осям 𝑦 и 𝑧 сетки для проекций𝐵𝑧 и𝐵𝑦 соот-
ветственно сдвинуты на полшага по отношению к сетке для проекции 𝐸𝑥, что
позволяет использовать и по пространству центрально взвешенную конечную
разность 2-го порядка точности с шагом равным шагу сетки. Геометрически
точка, в которой определено 𝐸𝑥, в плоскости 𝑥 = const окружена 4-мя точка-
ми, в которых определены 𝐵𝑦 и 𝐵𝑧, таким образом, правая часть уравнения
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(10.28) выражает собой аппроксимацию интеграла по контуру
∮︀
𝐵⃗ ·𝑑𝑟, то есть

является конечно-разностной аппроксимацией операции ротора.
Рассмотрим теперь уравнение временной эволюции компоненты 𝐵𝑦:

𝜕𝐵𝑦

𝜕𝑡
= 𝑐

𝜕𝐸𝑧

𝜕𝑥
− 𝑐

𝜕𝐸𝑥

𝜕𝑧
(10.29)

Его аппроксимация в FDTD имеет вид:

𝐵𝑦|𝑛+1/2
𝑖+1/2,𝑗,𝑘+1/2 −𝐵𝑦|𝑛−1/2

𝑖+1/2,𝑗,𝑘+1/2

Δ𝑡
= 𝑐

𝐸𝑧|𝑛𝑖+1,𝑗,𝑘+1/2 − 𝐸𝑧|𝑛𝑖,𝑗,𝑘+1/2

Δ𝑥
−

− 𝑐
𝐸𝑥|𝑛𝑖+1/2,𝑗,𝑘+1 − 𝐸𝑥|𝑛𝑖+1/2,𝑗,𝑘

Δ𝑧
(10.30)

Опять же все компоненты оказываются определены в одной плоскости 𝑦 = 𝑦𝑗,
и выражение справа также оказывается конечно-разностной аппроксимацией
интеграла по контуру

∮︀
𝐸⃗ · 𝑑𝑟. При этом выбор подсетки для проекций 𝐵𝑦 и

𝐸𝑥 оказывается согласованным с уравнением (10.28).
То же самое справедливо и для оставшихся четырёх уравнений. Выпишем

их в явном виде:

𝐸𝑦|𝑛+1
𝑖,𝑗+1/2,𝑘 − 𝐸𝑦|𝑛𝑖,𝑗+1/2,𝑘

Δ𝑡
= 𝑐

𝐵𝑥|𝑛+1/2
𝑖,𝑗+1/2,𝑘+1/2 −𝐵𝑥|𝑛+1/2

𝑖,𝑗+1/2,𝑘−1/2

Δ𝑧
−

− 𝑐
𝐵𝑧|𝑛+1/2

𝑖+1/2,𝑗+1/2,𝑘 −𝐵𝑧|𝑛+1/2
𝑖−1/2,𝑗+1/2,𝑘

Δ𝑥
(10.31)

𝐸𝑧|𝑛+1
𝑖,𝑗,𝑘+1/2 − 𝐸𝑧|𝑛𝑖,𝑗,𝑘+1/2

Δ𝑡
= 𝑐

𝐵𝑦|𝑛+1/2
𝑖+1/2,𝑗,𝑘+1/2 −𝐵𝑦|𝑛+1/2

𝑖−1/2,𝑗,𝑘+1/2

Δ𝑥
−

− 𝑐
𝐵𝑥|𝑛+1/2

𝑖,𝑗+1/2,𝑘+1/2 −𝐵𝑥|𝑛+1/2
𝑖,𝑗−1/2,𝑘+1/2

Δ𝑦
(10.32)

𝐵𝑥|𝑛+1/2
𝑖,𝑗+1/2,𝑘+1/2 −𝐵𝑥|𝑛−1/2

𝑖,𝑗+1/2,𝑘+1/2

Δ𝑡
= 𝑐

𝐸𝑦|𝑛𝑖,𝑗+1/2,𝑘+1 − 𝐸𝑦|𝑛𝑖,𝑗+1/2,𝑘

Δ𝑧
−

− 𝑐
𝐸𝑧|𝑛𝑖,𝑗+1,𝑘+1/2 − 𝐸𝑧|𝑛𝑖,𝑗,𝑘+1/2

Δ𝑦
(10.33)

𝐵𝑧|𝑛+1/2
𝑖+1/2,𝑗+1/2,𝑘 −𝐵𝑧|𝑛−1/2

𝑖+1/2,𝑗+1/2,𝑘

Δ𝑡
= 𝑐

𝐸𝑥|𝑛𝑖+1/2,𝑗+1,𝑘 − 𝐸𝑥|𝑛𝑖+1/2,𝑗,𝑘

Δ𝑦
−

− 𝑐
𝐸𝑦|𝑛𝑖+1,𝑗+1/2,𝑘 − 𝐸𝑦|𝑛𝑖,𝑗+1/2,𝑘

Δ𝑥
(10.34)

Плотность тока добавляется в эти уравнения естественным образом, если
её значение определено в тех же точках, что и соответствующая компонента
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поля 𝐸⃗, но со сдвигом на полшага по времени:

𝐸𝑥|𝑛+1
𝑖+1/2,𝑗,𝑘 − 𝐸𝑥|𝑛𝑖+1/2,𝑗,𝑘

Δ𝑡
= · · · − 4𝜋𝑗𝑥|𝑛+1/2

𝑖+1/2,𝑗,𝑘 (10.35)

𝐸𝑦|𝑛+1
𝑖,𝑗+1/2,𝑘 − 𝐸𝑦|𝑛𝑖,𝑗+1/2,𝑘

Δ𝑡
= · · · − 4𝜋𝑗𝑦|𝑛+1/2

𝑖,𝑗+1/2,𝑘 (10.36)

𝐸𝑧|𝑛+1
𝑖,𝑗,𝑘+1/2 − 𝐸𝑦|𝑛𝑖,𝑗,𝑘+1/2

Δ𝑡
= · · · − 4𝜋𝑗𝑧|𝑛+1/2

𝑖,𝑗,𝑘+1/2 (10.37)

Таким образом, функцию распределения следует определять на сетке (𝑥𝑖, 𝑦𝑗, 𝑧𝑘)
в моменты времени 𝑡𝑛+1/2, при этом значения плотности тока в промежуточ-
ных точках можно определять простым усреднением по соседним значениям:

𝑗𝑥|𝑛+1/2
𝑖+1/2,𝑗,𝑘 =

1

2

(︁
𝑗𝑥|𝑛+1/2

𝑖+1,𝑗,𝑘 + 𝑗𝑥|𝑛+1/2
𝑖,𝑗,𝑘

)︁
(10.38)

𝑗𝑦|𝑛+1/2
𝑖,𝑗+1/2,𝑘 =

1

2

(︁
𝑗𝑦|𝑛+1/2

𝑖,𝑗+1,𝑘 + 𝑗𝑦|𝑛+1/2
𝑖,𝑗,𝑘

)︁
(10.39)

𝑗𝑧|𝑛+1/2
𝑖,𝑗,𝑘+1/2 =

1

2

(︁
𝑗𝑧|𝑛+1/2

𝑖,𝑗,𝑘+1 + 𝑗𝑧|𝑛+1/2
𝑖,𝑗,𝑘

)︁
(10.40)

В уравнение эволюции функции распределения электромагнитные поля
входят только в часть, связанную с адвекцией по импульсам. Рассмотрим её:

𝜕𝑓

𝜕𝑡
+ 𝑞

(︂
𝐸⃗ +

𝑝

𝛾𝑚𝑐
× 𝐵⃗

)︂
𝜕𝑓

𝜕𝑝
= 0 (10.41)

Если мы воспользуемся одной их численных схем, в которых предполагается
постоянство скорости адвекции, то есть постоянных во времени и простран-
стве полей, то её можно условно представить в виде:

𝑓𝑛+1/2 = Δ𝑡ℱ
(︁
𝑓𝑛−1/2, 𝐸⃗, 𝐵⃗

)︁
, (10.42)

где ℱ — оператор, реализующий выбранную численную схему.
В случае если поля меняются во времени и пространстве, мы можем вос-

пользоваться той же самой схемой, если выберем аппроксимацию скорости
адвекции достаточно высокого порядка. Для обеспечения второго порядка
точности достаточно использовать значение полей в тех же точках простран-
ства, в которых определена функция 𝑓 , но в момент времени 𝑡𝑛:

𝑓𝑛+1/2 = Δ𝑡ℱ
(︁
𝑓𝑛−1/2, 𝐸⃗𝑛, 𝐵⃗𝑛

)︁
(10.43)

Поскольку в схеме FDTD все поля определены на сдвинутых на полшага сет-
ках, а функцию 𝑓 удобно определить в точках (𝑥𝑖, 𝑦𝑗, 𝑧𝑘), то значения полей
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в этих точках следует искать путём усреднения по ближайшим значениям:

𝐸𝑥|𝑛𝑖,𝑗,𝑘 =
𝐸𝑥|𝑛𝑖+1/2,𝑗,𝑘 + 𝐸𝑥|𝑛𝑖−1/2,𝑗,𝑘

2

𝐸𝑦|𝑛𝑖,𝑗,𝑘 =
𝐸𝑦|𝑛𝑖,𝑗+1/2,𝑘 + 𝐸𝑦|𝑛𝑖,𝑗−1/2,𝑘

2

𝐸𝑧|𝑛𝑖,𝑗,𝑘 =
𝐸𝑧|𝑛𝑖,𝑗,𝑘+1/2 + 𝐸𝑧|𝑛𝑖,𝑗,𝑘−1/2

2

𝐵𝑥|𝑛+1/2
𝑖,𝑗,𝑘 =

𝐵𝑥|𝑛+1/2
𝑖,𝑗+1/2,𝑘+1/2 +𝐵𝑥|𝑛+1/2

𝑖,𝑗−1/2,𝑘+1/2 +𝐵𝑥|𝑛+1/2
𝑖,𝑗+1/2,𝑘−1/2 +𝐵𝑥|𝑛+1/2

𝑖,𝑗−1/2,𝑘−1/2

4

𝐵𝑦|𝑛+1/2
𝑖,𝑗,𝑘 =

𝐵𝑦|𝑛+1/2
𝑖+1/2,𝑗,𝑘+1/2 +𝐵𝑦|𝑛+1/2

𝑖−1/2,𝑗,𝑘+1/2 +𝐵𝑦|𝑛+1/2
𝑖+1/2,𝑗,𝑘−1/2 +𝐵𝑦|𝑛+1/2

𝑖−1/2,𝑗,𝑘−1/2

4

𝐵𝑧|𝑛+1/2
𝑖,𝑗,𝑘 =

𝐵𝑧|𝑛+1/2
𝑖+1/2,𝑗+1/2,𝑘 +𝐵𝑧|𝑛+1/2

𝑖−1/2,𝑗+1/2,𝑘 +𝐵𝑧|𝑛+1/2
𝑖+1/2,𝑗−1/2,𝑘 +𝐵𝑧|𝑛+1/2

𝑖−1/2,𝑗−1/2,𝑘

4

Поле 𝐸⃗, как и требуется, определено в момент времени 𝑡𝑛, однако поле
𝐵⃗ сдвинуто на полшага по времени. Чтобы достичь 2-го порядка точности,
в этом случае можно применить схему разделения Стрэнга, одну половину
шага используя поле 𝐵⃗𝑛−1/2, а вторую половину — поле 𝐵⃗𝑛+1/2:

𝑓 ′ =
Δ𝑡

2
ℱ
(︁
𝑓𝑛−1/2, 0, 𝐵⃗𝑛−1/2

)︁
(10.44)

𝑓 ′′ = Δ𝑡ℱ
(︁
𝑓 ′, 𝐸⃗𝑛, 0

)︁
(10.45)

𝑓𝑛+1/2 =
Δ𝑡

2
ℱ
(︁
𝑓 ′′, 0, 𝐵⃗𝑛+1/2

)︁
(10.46)

В результате одна итерация во времени представляет собой последователь-
ную цепочку вычислений:

𝑓𝑛−1/2, 𝐸⃗𝑛, 𝐵⃗𝑛−1/2 =⇒ 𝑓 ′′, 𝐸⃗𝑛, 𝐵⃗𝑛−1/2 =⇒ 𝑓 ′′, 𝐸⃗𝑛, 𝐵⃗𝑛+1/2 =⇒
=⇒ 𝑓𝑛+1/2, 𝐸⃗𝑛, 𝐵⃗𝑛+1/2 =⇒ 𝑓𝑛+1/2, 𝐸⃗𝑛+1, 𝐵⃗𝑛+1/2 (10.47)

Адвекцию функции распределения по пространственным координатам в этой
схеме удобно осуществлять на шаге вычисления 𝑓 ′′ по схеме разделения опе-
раторов Стрэнга.

Мы здесь рассмотрели только базовые особенности схемы FDTD. За более
полным её описанием в случае необходимости следует обращаться к специа-
лизированным источникам. Отметим здесь лишь следующие моменты. Схема
FDTD может быть записана также в двумерном и одномерном случаях, при
этом её вид упрощается. Схема устойчива при выполнении аналога условия
Куранта:

Δ𝑡 ≤ 1

𝑐
√︁

1
Δ𝑥2 +

1
Δ𝑦2 +

1
Δ𝑧2

(10.48)
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Все конечно-разностные схемы обладают численной дисперсией: скорость
волн в моделировании оказывается зависящей от их длины волны. Для FDTD
дисперсионное уравнение имеет вид:

sin2
(︂
𝜔Δ𝑡

2

)︂
=

(︂
𝑐Δ𝑡

Δ𝑥

)︂2

sin2
(︂
𝑘𝑥Δ𝑥

2

)︂
+

(︂
𝑐Δ𝑡

Δ𝑦

)︂2

sin2
(︂
𝑘𝑦Δ𝑦

2

)︂
+

+

(︂
𝑐Δ𝑡

Δ𝑧

)︂2

sin2
(︂
𝑘𝑧Δ𝑧

2

)︂
(10.49)

Оценим величину этой дисперсии для следующих условий: пусть плоская
монохроматическая волна бежит вдоль оси 𝑥, 𝑘𝑥 = 𝑘, шаги сетки по всем
осям одинаковые и равны Δ𝑥, и шаг Δ𝑡 выбран максимальным необходимым
для обеспечения устойчивости Δ𝑡 = Δ𝑥/𝑐

√
3. Получаем:

sin

(︂
𝜔Δ𝑥

2
√
3𝑐

)︂
=

1√
3
sin

(︂
𝑘Δ𝑥

2

)︂
(10.50)

Групповая скорость будет равняться:

𝑣гр =
𝑑𝜔

𝑑𝑘
= 𝑐

cos
(︀
𝑘Δ𝑥
2

)︀
cos
(︁

𝜔Δ𝑥
2
√
3𝑐

)︁ (10.51)

К примеру, при использовании 8 точек на период волны, то есть 𝑘Δ𝑥 = 2𝜋/8,
получаем 𝜔 ≈ 0,983𝑐𝑘, фазовую скорость волны 𝑣ф ≈ 0,983𝑐 и групповую ско-
рость 𝑣гр ≈ 0,947𝑐, то есть огибающая такого импульса будет отставать от
правильного положения на одну длину волны при распространении на при-
близительно 20 длин волн. Для сравнения при использовании 6 точек на пери-
од волны ошибка групповой скорости увеличивается в два раза 𝑣гр ≈ 0,905𝑐,
а при использовании 10 точек на длину волны почти вдвое уменьшается
𝑣гр ≈ 0,967𝑐. Таким образом, уменьшить дисперсию можно за счёт умень-
шения шага сетки, в пределе Δ𝑥→ 0, Δ𝑡→ 0 дисперсионное уравнение стре-
мится к 𝜔 = 𝑐

√︁
𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 . Существуют также модификации схемы FDTD,

в которых дисперсия может быть ликвидирована в одном из направлений.
Схема FDTD может быть дополнена внешними источниками, которые бу-

дут генерировать излучение с нужными характеристиками. Это позволяет
не задавать, например, падающий на вещество электромагнитный импульс
в виде начальных условий в области моделирования, а сгенерировать его в
области источников в ходе моделирования, что уменьшает область простран-
ства, моделирование которой требуется проводить.

Убегающие из области взаимодействия волны при этом на границах рас-
чётной области можно поглощать, что моделирует открытые граничные усло-
вия. Существует несколько подходов к реализации поглощающих граничных
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условий. Один из наиболее успешных и распространённых — идеально согла-
сованные поглощающие слои Беренджера (Bérenger’s Perfectly matched layers,
PML). Их идея заключается в том, что вблизи границ располагаются слои
толщиной в несколько точек сетки, в которых в уравнения Максвелла добав-
лены чисто мнимые электрическая и магнитная проницаемости 𝜀 = 1 + 𝑖𝜀′′,
𝜇 = 1+ 𝑖𝜇′′. Таким образом, в этих слоях электромагнитные волны затухают.
При этом, если выбрать 𝜀′′ = 𝜇′′ то волновое сопротивление поглощающих
слоёв будет в точности равно вакуумному: 𝑍 =

√︀
𝜀/𝜇 = 1, и отражение от

них будет отсутствовать.
В заключении отметим, что в настоящее время связка методов FDTD и

частиц в ячейках является де-факто стандартом для проведения численно-
го моделирования системы уравнений Власова — Максвелла. В открытом
доступе находятся сразу несколько многофункциональных программ, реали-
зующих эти методы. Несколько из них приведены в списке литературы. В
большинстве случаев возможностей этих программ должно быть достаточ-
но для проведения физических исследований, поэтому необходимость писать
свой программный код, как правило, отсутствует. Часть из этих программ
допускает расширение функционала за счёт написания своих модулей, что
требует значительно меньшего времени, чем разработка программы с нуля.
Таким образом, кинетическое моделирование оказывается доступным всем
желающим.
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