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Понятие сигнала. Аналоговые и
цифровые сигналы. Дискретизация

1. Введение в цифровую обработку сигналов
(ЦОС)
Мотивация: Почему мы переходим от аналоговой обработки к цифровой?

Гибкость: Одна программа может обрабатывать разные сигналы (аудио, видео,
биомедицинские).
Точность и воспроизводимость: Цифровые алгоритмы не подвержены
"дрейфу" параметров, как аналоговые компоненты.
Сложные алгоритмы: Возможность реализации методов, недоступных в
аналоговой технике (вейвлеты, адаптивная фильтрация).
Хранение и передача: Цифровой сигнал можно сжимать, защищать от
ошибок, передавать без потерь.

Области применения:

системы связи (радиосвязь, мобильная связь, сети интернет)
аудио/видео кодеки (MP3, H.264)
медицинская диагностика (ЭКГ, МРТ)
системы распознавания речи и изображений, радиолокация

Схожие принципы применяются также в:

Финансы и алгоритмический трейдинг: Анализ временных рядов.
Data Science и машинное обучение: Предобработка данных, анализ и
выделение признаков из временных рядов и многомерных данных.
Теория управления и робототехника: Дискретное управление системами,
анализ и синтез цифровых регуляторов, обработка данных с датчиков.
Вычислительная биология и биоинформатика: Анализ геномных
последовательностей, обработка данных спектроскопии, выявление паттернов
в биологических временных рядах (например, активность нейронов).
Компьютерная графика и физическое моделирование: Генерация и
обработка текстур, создание физически правдоподобных анимаций.

https://korzhimanov.ru/


2. Основные понятия
Сигнал — это любая физическая величина, изменяющаяся во времени и несущая
информацию.

Цифровой сигнал — это сигнал, представленный в виде числовой
последовательности, полученной в результате дискретизации по времени и
квантования по уровню.

1. Информационный носитель: Исходно сигнал — это изменение во времени
или пространстве физической величины (напряжение, давление, интенсивность
света, температура и т.д.), которое кодирует информацию (речь, изображение,
показания датчика).

2. Дискретность по времени (или пространству): В ЦОС работают не с
непрерывным сигналом, а с его отсчётами (сэмплами), взятыми через равные
промежутки времени (период дискретизации). Таким образом, сигнал
представляется как последовательность x[n] , где n  — целочисленный
временной индекс (например, x[0], x[1], x[2], ... ).

3. Дискретность по уровню (квантование): Значение каждого отсчёта не
произвольное, а приближённое до ближайшего значения из конечного набора
уровней (квантов). Это позволяет хранить и обрабатывать сигнал в цифровой
форме.

4. Математическая абстракция: В рамках алгоритмов цифровой обработки
сигнал x[n]  рассматривается как математическая функция целочисленного
аргумента (дискретного времени). Это позволяет применять к нему
формальные математические операции: фильтрацию, преобразования (Фурье,
Z-преобразование), свёртку и другие.

Важно: В широком смысле, в современном понимании сигналом может выступать
любая упорядоченная последовательность данных (например, ежемесячные
продажи компании, последовательность генов в ДНК, пиксели в строке
изображения), даже если они не имеют «физического» аналогового прототипа.
Ключевое — наличие порядка (например, временного или пространственного) и
возможность применения к этим данным стандартного аппарата цифровой
обработки сигналов.

Типы сигналов



Тип сигнала Определение Пример

Аналоговый
(непрерывный)

Непрерывен по времени и
амплитуде

Звуковая волна в воздухе,
напряжение на выходе микрофона

Дискретный
Определен только в
отдельные моменты
времени (отсчеты)

Последовательность значений
аналогового сигнала в моменты t₁,
t₂, ...

Цифровой Дискретен и по времени, и
по амплитуде (квантован)

Файл WAV, массив целых чисел в
памяти компьютера

3. Процесс аналого-цифрового
преобразования (АЦП)
АЦП состоит из двух основных этапов:

1. Дискретизация во времени (sampling) — взятие отсчетов через равные
промежутки времени.

Частота дискретизации ( ) — количество отсчетов в секунду (Гц).
Период дискретизации ( ) — время между отсчетами: .

2. Квантование по уровню (quantization) — приведение каждого отсчета к
ближайшему значению из конечного набора.

Разрядность (битность) — количество бит на отсчет (8, 16, 24 бита).
Шум квантования — ошибка из-за округления амплитуды.

4. Теорема Котельникова (Найквиста —
Шеннона)
Если аналоговый сигнал  имеет ограниченный спектр (не содержит частот
выше некоторой ), то он может быть точно восстановлен из своих дискретных
отсчетов, взятых с частотой:
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где:

 — частота дискретизации
 — максимальная частота в спектре сигнала

Частота Найквиста  — максимальная частота, которая может быть
представлена при данной  без искажений.

Простой вывод теоремы (идея)

1. Сигнал с ограниченным спектром ( ) можно представить
суммой гармоник (синусоид) с частотами от 0 до .

2. Рассмотрим самую быструю гармонику с частотой . Её период
.

3. Чтобы однозначно задать синусоиду, нужно как минимум две точки за период:
например, на максимуме и минимуме. Если взять меньше двух точек, то более
высокочастотная синусоида может «маскироваться» под более низкочастотную
(это явление — алиасинг или наложение спектров).

4. Следовательно, интервал дискретизации  должен быть меньше половины
минимального периода: . Это эквивалентно условию для частоты
дискретизации: .

5. При  фаза отсчетов может оказаться неудачной (например, взятие
отсчетов только в нулях синусоиды), что сделает восстановление невозможным.
Поэтому на практике требуется строгое неравенство .

То же самое в математической форме

Пусть  — спектр сигнала .

Так как предполагается, что  равен нулю вне полосы , то
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Если мы положим , где  — целое число, то получим:

Слева стоят значения  в точках отсчёта.

Интеграл справа, по сути, представляет собой -ый коэффициент в разложении
функции  в ряд Фурье.

Это означает, что значения отсчётов  определяют
коэффициенты Фурье в разложении .

Таким образом, они определяют и саму функцию , поскольку  равна
нулю для частот выше , а для более низких частот  определяется, если
известны её коэффициенты Фурье.

Но  полностью определяет исходную функцию , так как функция
определяется, если известен её спектр. Следовательно, исходные отсчёты
полностью определяют функцию .

Как точно восстановить сигнал (Формула Уиттекера —
Котельникова — Шэннона)

Разложение в ряд Фурье в частотной области

Рассмотрим сигнал  с ограниченным спектром: его Фурье-образ  для
всех .

Введём функцию , являющуюся периодическим продолжением функции 
с периодом  за пределы интервала , тогда:

где  — прямоугольная функция, равная 1 при  и 0 при .
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Поскольку функция  периодическая, то её можно разложить в ряд Фурье:

Коэффициенты Фурье  вычисляются как:

Связь коэффициентов  с отсчётами сигнала

Применим обратное преобразование Фурье к , получаем:

Подставим разложение  в ряд Фурье:

Поменяем порядок суммирования и интегрирования:

Вычислим интеграл:

где .
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Таким образом:

Выражение коэффициентов  через отсчёты сигнала

Вычислим  при :

Учтём, что  при  и  при , получаем:

Отсюда:

То есть коэффициенты ряда Фурье  — это просто значения сигнала  в точках
отсчёта  (с нормировкой, но это непринципиально).

Формула восстановления (ряд Уиттекера — Котельникова —
Шеннона)

Подставим  в выражение для , получаем окончательную формулу:

Примечание

Можно сделать быстрее, если воспользоваться свойством преобразования Фурье:
умножение спектров соответствует свёртке оригиналов, и знать, что обратное
преобразование Фурье от прямоугольной функции — функция :

Важно

Для точной реконструкции сигнала требуется применение специального
преобразования (интерполяции, ресепмплинга) по формуле Уиттекера —
Котельникова — Шеннона
При  фаза отсчётов для правильной реконструкции амплитуды
должна попадать точно в максимум синуса, поэтому надо брать 
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 

Если спектр сигнала ограничен и снизу частотой , то достаточно
. Но для восстановления требуется знать центральную

частоту .

5. Алиасинг (наложение спектров)

Что происходит при нарушении теоремы?
Если , возникает алиасинг (alias — псевдоним, выдающий себя за
другого).

Механизм: Высокочастотные компоненты сигнала "маскируются" под
низкочастотные после дискретизации.

Примеры

"Эффект колеса" (стробоскопический эффект) в кино

Классический пример: колесо или винт в кино вращается назад, хотя на самом деле
вращается вперед. Частота кадров ( ) недостаточна для корректного
представления частоты вращения колеса ( ).

Муар на изображениях

fmin

fs = 2(fmax − fmin)

f0 = (fmax + fmin)/2

fs < 2fmax

fs

f

0:00 / 1:21



Искажения в компьютерной графике



Важно
Алиасинг это не просто искажение высоких частот. Он приводит к "ложным" низким
частотам.

6. Антиалиасинговые фильтры



На практике перед АЦП всегда ставят антиалиасинговый фильтр (фильтр нижних
частот), который:

1. Пропускает частоты ниже 
2. Подавляет частоты выше  (чтобы они не создавали алиасинг)

Схема реального АЦП:

[Аналоговый сигнал] → [Антиалиасинговый фильтр] → [АЦП] → [Цифровой сигнал]

7. Практические рекомендации

1. Выбор : Учитывайте максимальную частоту в сигнале и добавляйте запас 10-
20%.

2. Примеры:
Аудио CD:  = 20 кГц,  = 44.1 кГц
Телефонная связь:  = 3.4 кГц,  = 8 кГц
Видео: частота кадров 60 Гц позволяет передавать частоты колебаний и
вращений до 30 Гц

3. Антиалиасинговый фильтр: Перед дискретизацией накладывайте на сигнал
фильтр нижних частот с .

4. Проверка на алиасинг: Визуализируйте спектр сигнала до и после
дискретизации.

8. Домашнее задание
Задача: Музыкальный фрагмент содержит частоты до 22 кГц. Для его оцифровки
доступны АЦП со следующими частотами дискретизации: 32 кГц, 44.1 кГц, 48 кГц, 96
кГц.

1. Какие из этих частот теоретически пригодны для корректной оцифровки?
2. Какую частоту вы выберете и почему?
3. Рассчитайте, сколько мегабайт займет 3-минутная стерео запись (16 бит на

отсчет) при выбранной вами частоте дискретизации.

fmax

fmax

fs

fmax fs

fmax fs

f < fs/2


