
Кинетическое описание плазмы

Модель N тел

Гамильтоновость
Для электростатической системы

Можно обобщить на полностью электродинамическую систему

Кинетическая модель

Функция распределения
 — 6N-мерное фазовое пространство

 — функция распределения, плотность вероятности обнаружить систему
в фазовом объёме 

Теорема Лиувилля

 — скобки Пуассона
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Если  — плотность абстрактной жидкости в фазовом пространстве, то
теорема Лиувилля утверждает, что эта жидкость несжимаема.

Доказательство

Закон сохранения числа частиц (уравнение непрерывности):

Цепочка Боголюбова
 — -частичная функция распределения

Из уравнения Лиувилля:

Для 1-частичной функции распределения:

Уравнение Власова
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Пренебрегаем столкновениями
 — одночастичная функция распределения для каждой фракции

Поля  и  — усреднённые, самосогласованные

Моменты 1-частичной функции распределения

0-й момент: концентрация частиц (скаляр)

Плотность заряда

1-й момент: плотность импульса (вектор)

Гидродинамическая (усреднённая) скорость

Плотность тока

2-й момент: плотность потока импульса (тензор)
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Тензор давления

Давление (скаляр)

Давление (скаляр)

Плотность энергии (скаляр)

Уравнение состояния

Интеграл столкновений

Аппроксимируем интеграл от 2-частичной функции распределения неким
функционалом (называемым интегралом столкновений) от 1-частичной
функции

Это уравнение принято называть кинетическим уравнением Больцмана

Конкретный вид Q определяется из физических соображений и
использованных приближений
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Если столкновения упругие, то есть сохраняют импульс и энергию, и
обусловлены действием центрально-симметричных сил, то в нерелятивистском
пределе в самом общем виде интеграл столкновений может быть записан в
виде

 — импульс, передаваемый от одной частицы другой,  — угол рассеяния

 называют ядром, и его вид определяется физическим механизмом
столкновения

Интеграл в таком виде сохраняет число частиц, полный импульс и энергию
системы.

-приближение (Bhatnagar, Gross, Krook)

Кулоновский интеграл

 — дифференциальное сечение рассеяния

формула Резерфорда:

 — электрические заряды сталкивающихся частиц
 — приведённая масса

 — единичный телесный угол

При интегрировании по углам — логарифмически расходится
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Интеграл Ландау:
Особенность плазмы:

дальнодействие электростатических сил 

условие идеальности (мало сильных столкновений)  малая
экранировка (много слабых столкновений)

В малоугловом приближении столкновения приводят к диффузии в импульсном
пространстве:

 — кулоновский логарифм,  — минимальный угол отклонения

частицы при сохранении кулоновского характера столкновения

 — при дебаевском характере экранировки в классическом

случае, когда : ; соответствует прицельному
параметру порядка радиуса Дебая

 — в квантовом случае, когда ; соответствует

прицельному параметру порядка длины волны де Бройля

Свойства уравнения Власова

Несжимаемость фазового объёма
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Законы сохранения

Сохранение -норм

В электростатическом случае в отсутствии внешних полей:

Закон сохранения импульса:

Закон сохранения энергии:

Дивергентная форма

Что почитать
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