
Методы численного решения
уравнений электродинамики

Уравнения Максвелла

В задачах плазменной кинетики, как правило, все заряды считаются
свободными (но могут отдельно учитываться поляризация и магнитный момент
ионов):

Таким образом, решается система:

Потенциальное описание
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Вводят векторный  и скалярный  потенциалы:

Потенциалы определены с точностью до произвольной функции :

Выбор функции  называется калибровкой

Калибровка Лоренца:

Уравнения остаются волновыми (локальными в пространстве)
Уравнение Пуассона не решается в явном виде

Калибровка Кулона:

В явном виде решается уравнение Пуассона
Система становится нелокальной

Достоинства потенциального описания

→A φ

→E = −∇φ − →A

→B = rot →A,

1

c

ψ(→r)

→A
′

= →A + ∇ψ

φ′ = φ −
1

c

∂ψ

∂t

ψ(→r)

div →A + = 0
1

c

∂φ

∂t

− c2Δ →A = 4πc→j

− c2Δφ = 4πc2ρ

∂2 →A

∂t2

∂2φ

∂t2

div →A = 0

− c2Δ →A = 4πc→j − c ∇φ

Δφ = −4πρ

∂2 →A

∂t2

∂

∂t



Явный учёт калибровочной инвариантности (внутренней симметрии уравнений
Максвелла)

Явный учёт вихревого характера магнитного поля

В случае кулоновской калибровки явный учёт уравнения Пуассона

Недостатки потенциального описания

Необходимость пересчёта потенциалов в поля для вычисления сил

Нелокальность уравнения Пуассона

Решение уравнения Пуассона спектральным
методом Фурье

Рассмотрим уравнение Пуассона для электрического потенциала:

Это уравнение параболического типа, для которого решается краевая задача,
то есть это уравнение требуется также дополнить граничными условиями

Как правило, считается, что плазма глобально нейтральна и поэтому можно
положить на её границе  или воспользоваться периодическими
граничными условиями

Удобно применить спектральный метод преобразования Фурье
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Здесь учтено, что , , 

Система в Фурье-пространстве

Подставим Фурье-преобразования в уравнение Пуассона и приравняем нулю
коэффициенты при отдельных гармониках:

Зная  и взяв обратное преобразование Фурье, можем найти  в
произвольных точках пространства

Метод конечных разностей во временной
области

Уравнения Максвелла — уравнения гиперболического типа (волновые)

Применимы стандартные методы решения дифференциальных уравнений в
частных производных

Наибольшую точность, как правило, даёт метод Фурье, обеспечивая также
отсутствие численной дисперсии

При сложной геометрии электродов применяют метод конечных элементов

Для больших задач, требущих эффективного распараллеливания, применяют
метод конечных разностей, называемый методом конечных разностей во
временной области (Finite Difference in Time Domain, FDTD)

Сетка Йи (Yee)
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Сетка Йи представляет собой несколько подсеток, сдвинутых относительно друг
другу на половину шага
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Значения на разных подсетках определяются в моменты времени, также
сдвинутые на полшага по времени относительно друг друга

Это позволяет записать уравнения Максвелла в конечных разностях с
точностью второго порядка в виде явной схемы

Например, для временной эволюции  имеем:
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И то же самое для :
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И для остальных компонент:

Плотность тока должна быть определена в тех же точках, что и
соответствующие компоненты электрического поля, но сдвинута на полшага по
времени:
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Сопряжение с уравнением Власова

Будем определять функцию распределения на сетке  в моменты
времени 

Вычисление плотности тока:

В уравнение Власова поля входят только в адвекцию по импульсам:

Пусть использована некая схема решения с постоянной скоростью адвекции:

Для достижения второго порядка точности по времени надо знать поля в
момент времени  в точках сетки :

Будем искать значения полей в этих точках путём усреднения по ближайшим
значениям:
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Применим схему разделения операторов Стрэнга

В результате получаем следующую последовательность операций на одном
итерации:

Адвекцию функции распределения по пространственным координатам удобно
осуществлять на шаге вычисления  по схеме разделения операторов Стрэнга

Примечания по схему FDTD

Схема устойчива при выполнении аналога условия Куранта:
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Схема обладает численной дисперсией

Пример: пусть , ,  , 

Групповая скорость:

6 8 10

0.968 0.983 0.989

0.905 0.947 0.967

Схема может быть дополнена внешними источниками, которые будут
генерировать излучение с нужными характеристиками

Убегающие из области взаимодействия волны при этом на границах расчётной
области можно поглощать, что моделирует открытые граничные условия

Идеально согласованные поглощающие слои Беренджера (Berenger's Perfectly
matched layers, PML):

, 
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