
Методы поиска точных решений
уравнения Власова

Метод характеристик

Это уравнение переноса в 6-мерном пространстве со скоростью 

Характеристики

Рассмотрим систему уравнений

 — характеристики уравнения переноса (траектории частиц в
фазовом пространстве)

Свойства характеристик

Транзитивность:

Отображение  — диффеоморфизм (взаимно однозначное и
гладкое) по отношению к 

Если , то якобиан отображения:
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Характеристики дают решение исходного дифференциального уравнения:

Пример: Свободный одномерный поток

Уравнения характеристик:

Уравнения характеристик:

Их решение:

Решение исходного уравнения:

f(t, x) = f0 (X(0; t, x))
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V (t; s,x, v) = v

X(t; s,x, v) = x + v(t − s)

f(x, v, t) = f0(x − vt, v)



Пример: Электронный пучок вблизи нуля линейно
нарастающего поля

Имеем внешнее поле:

Уравнения характеристик:

Уравнения характеристик:

Их решение:
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V (t; s,x, v) = v cos(t − s) − x sin(t − s)



Решение исходного уравнения:

Метод интегралов движения для уравнения
Власова

В стационарном случае траектория движения частицы в 6-мерном
пространстве может быть задана 5-ю интегралами движения (первыми
интегралами системы уравнений Гамильтона) :

Эффективно при высокой степени симметрии задачи:
Часть интегралов — аддитивные, связанным с симметрией (энергия,
обобщённый импульс)
От остальных интегралов функция не зависит

Если не удаётся найти все интегралы, то известные позволяют понизить
количество переменных

В качестве приближённых интегралов могут выступать адиабатические
инварианты

X(t; s,x, v) = x cos(t − s) + v sin(t − s)

f(x, v, t) = f0(x cos t − v sin t, v cos t + x sin t)

{I1 (→r, →p) I2 (→r, →p) … I5 (→r, →p)}

f (t, →r, →p) ≡ g (I1, I2 … I5)



Энергетическая подстановка

В стационарном случае всегда сохраняется энергия (сама функция Гамильтона)

В одномерном случае в отсутствии магнитного поля и поперечных
электрических полей это позволяет полностью исключить уравнение Власова

 — электростатический потенциал

Распределение поля и плазмы в пространстве будет определяться решением
уравнения Пуассона:

Пример: плоский дебаевский слой

Ионы будем считать неподвижными и равномерно распределёнными в :

Уравнение Пуассона принимает вид:
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Пусть электроны распределены по закону Больцмана — Максвелла:

 — фоновая концентрация электронов в области, где потенциал равен нулю

Если потенциал спадает к нулю внутри плазмы, то 

Безразмерные переменные:

 — радиус Дебая

Получаем:

Это нелинейное уравнение, не имеющее аналитического решения

Рассмотрим область :

Обозначим  и перепишем:

Поделим и получим:
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 (в области где поле  отсутствует, потенциал устремляется в
бесконечность:  при )

 определено в области ,  — в области . Поскольку мы ищем
решение во всей области , выберем решение 

Рассмотрим теперь область :

Проинтегрируем один раз аналогично случаю :

В глубине плазмы ( ) поле и потенциал спадают до нуля: , ,
следовательно, 
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Получаем:

Его решение надо сшить с решением уравнения в области . Выберем в
качестве решения снова  и приравняем выражения для  в точке :

Получаем . Его следует использовать в качестве граничного условия
при численном решении уравнения

Найдём также :

Что почитать
Bertrand, Del Sarto, Ghizzo. The Vlasov Equation 1: History and General Properties,
Chapter 5

= ±√2(eφ± − φ± − 1)
dφ±

dξ

1
2

x > 0

φ− y2 x = 0

2eφ0 = 2 (eφ0 − φ0 − 1)

φ0 ≡ φ(0)

φ0 = −1

ξ0

φ0 = −2 ln{− }

ξ0 = −√2e−φ0/2 = −√2e

ξ0

√2



Eric Sonnendrücker. Numerical methods for the Vlasov equations. Lecture notes.
2013.
G. Dimarco, L. Pareschi. Numerical methods for kinetic equations. Acta Numerica,
Cambridge University Press (CUP), 2014, pp. 369-520.
P. Degond. Macroscopic limits of the Boltzmann equation: a review // Modeling and
Computational Methods for Kinetic Equations. Ed. P. Degond, L. Pareschi, G. Russo.
2004. P. 3.

Дома
Методом характеристик решить задачу о динамике плазмы во внешнем
однородном магнитном поле:

f ≡ f(t, vx, vy)

→B = →z0B0

f(0, vx, vy) = F(vx, vy)


