
Методы поиска точных решений
уравнения Власова

Нелинейные моды Бернстейна — Грина —
Крускала (БГК)

Для ионов:
 не могут существовать

 совершают финитное движение в области
 и инфинитное в области 
 движение ничем не ограничено

E+ < qφmin

qφmin < E+ < qφmax

x1 < x < x2 x > x3

E+ > qφmax



Для электронов:
 не могут существовать

 совершают финитное движение в области
 и инфинитное в области 

 движение ничем не ограничено

Частицы, совершающие финитное движение, называют захваченными.
Их функция распределения в изолированных друг от друга областях может
отличаться (но в отсутствии потерь должна быть симметричной относительно

)

Аналитическое описание одномерных мод БГК

Исходные уравнения:
Одномерное уравнение Власова

Уравнение Пуассона

Рассмотрим случай  и будем считать ионы неподвижным однородным
фоном:

E− < −eφmax

−eφmax < E− < −eφmin

x2 < x < x3 x < x1

E− > −eφmin
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Удобно разбить функцию распределения на пролётные частицы и захваченные
частицы:

Введём безразмерные величины:

Будем искать стационарные решения и воспользуемся энергетической
подстановкой:

Получаем уравнение:

Существует два основных подхода к решению:
Интегральный или метод БГК
Дифференциальный или метод классического (или псевдо-) потенциала
Сагдеева — Шамеля

Интегральный метод БГК

Начинаем с заданной функции . Тогда распределение электронов в
пространстве известно:

Выразим концентрацию как функцию потенциала (если она многозначна, надо
рассмотреть каждую ветку — то есть каждую яму — отдельно):

Задаём распределение пролётных частиц . Эта функция определена
только для :

f(t,x, v) = fп(t,x, v) + fз(t,x, v)
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где  — функция включения Хевисайда:  при  и 
при 

Другими словами:

где  — заданное распределение в точке минимума потенциала
 определена в области 

Получаем:

Обозначим

И получаем:

Это интегральное уравнение на функцию распределения захваченных частиц

Оно сводится к интегральному уравнению Абеля и решается, например,
методом преобразования Лапласа. Решение:

Эта функция определена только для 

Ограничения метода:
Произвольность выбора  и  ограничена требованием 
При неудачном выборе  функция  может иметь бесконечную
производную (сингулярность) вблизи точек сшивки с функцией  —
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это, вообще говоря, нефизично. Обычно достаточно задать правильную
асимптотику  на бесконечности , что соответствует
дебаевской экранировке в плазме для максвелловского распределения по
скоростям. Но можно сформулировать и более общее условие

Дифференциальный метод потенциала Сагдеева —
Шамеля

Начинаем с задания функции  или . Например, в форме Шамеля:

 — скорость потока на бесконечности
 определяет количество захваченных электронов

Вводим функцию

Получаем дифференциальное уравнение

Это уравнение можно рассматривать как движение вдоль  в потенциале 
, поэтому  называют классическим или псевдопотенциалом

Решение уравнения:
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Ищем решение, удовлетворяющее граничным условиям

Нейтральные токовые структуры

Поперечные токи и самосогласованное с ними магнитное поле

Разделение зарядов и электростатическое поле отсутствуют

Функция распределения:
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Нужны 3 интеграла движения. Ими являются энергия  и две поперечные
проекции обобщённого импульса частиц :

 — проекции векторного потенциала на соответствующие оси

Из уравнений Максвелла остаётся теорема о циркуляции тока:

где плотность тока:

Получившееся уравнение на векторный потенциал принято называть
уравнением Грэда — Шафранова

Пример: токовый слой Харриса

Токи создаются только электронами и направлены только вдоль оси : ,

Ищем решение для функции распределения в виде:

Выясним физический смысл скорости :

f(t, →r, →p) ≡ f(x, px, py, pz)
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Таким образом,  играет роль средней скорости электронов
(гидродинамической скорости потока) вдоль оси 

Пусть в области, где , концентрация электронов равна , вычислим
нормировочную константу:

Получаем:

Найдём связь плотности тока и векторного потенциала :
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Получаем:

Подставим это выражение в теорему о циркуляции тока и получим:

Введём безразмерные величины:

где  — инерционная электронная длина (глубины плазменного
скин-слоя) (  — электронная плазменная частота)

 — тепловая скорость электронов

Получаем:

Обозначим  и получим:

I =

+∞

∭
−∞

pz exp{− } =

=

+∞

∫
−∞

pz exp{− } =

=

+∞

∫
−∞

(pz − mv) exp{− } +

+ mv

+∞

∫
−∞

exp{− } = mv

p2
x + p2

y + (pz − mv)2

2mT

dpxdpydpz

(2πmT )
3
2

(pz − mv)2

2mT

dpz

(2πmT )
1
2

(pz − mv)2

2mT

d(pz − mv)

(2πmT )
1

2

(pz − mv)2

2mT

d(pz − mv)

(2πmT )
1
2

jz = −eNe0v exp{ }eAzv

cT

= − exp{ }d2Az

dx2

4πeNe0v

c

eAzv

cT

a =

ξ = x( )
1/2

= ,

eAzv

cT

8πe2Ne0

T

v

c

x√6

de0

v

vT

de0 = c/ωpe0

ωpe0

vT = √3T/m

= −2ea
d2a

dξ2

y = da/dξ

= −2ea

= y

dy

dξ

da

dξ



Поделим верхнее на нижнее:

Положим  (в точке, где магнитное поле обращается в нуль ( ),
векторный потенциал также обращается в нуль ( ))

Получаем:

Рассмотрим интеграл от правой части:

Таким образом, получаем:

Константа  может быть выбрана равной нулю соответствующим выбором
начала отсчёта оси 

Имеем:

Найдём распределение магнитного поля:

распределение плотности тока:
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распределение концентрации:

Получили токовый плазменный cлой, разделяющий области с противоположно
направленным магнитным полем

Физический смысл: в нулевой плоскости ( ) образуется уплотнение
плазмы, чтобы кинетическое давление плазмы уравновешивало бы давление
магнитного поля:

где 
слева стоит выражение для магнитного давления на бесконечности, а справа —
выражение для кинетического давления в точке .

Что почитать
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Chapter 5
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Дома
Получить уравнения для слоя Харриса с ведущим полем (постоянным по
величине полем )Bz


