
Введение в методы моделирования
кинетического уравнения

Метод разделения операторов (Operator
splitting)

C. Cheng and G. Knorr, The integration of the Vlasov equation in configuration
space, Comput. Phys. Comm. 22, 330–335 (1976)

Простой пример

Разделяем операторы/уравнения
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В общем виде

Оценим точность аппроксимации

Если , то  — точное решение

В обратном случае это аппроксимация 1-го порядка точности по 

Доказательство
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Метод разделения операторов Стрэнга (Strang splitting)
G. Strang, On the construction and the comparison of difference schemes, SIAM J.
Numer. Anal. 5, 506–517 (1968)

Цель: повысить точность аппроксимации при разделении операторов

Примечания

Метод Стрэнга — это частный случай метода пердиктор-корректора,
универсального метода увеличения точности аппроксимации

Метод Стрэнга отличается от метода первого порядка только первым и
последним шагом

Можно построить разделение операторов с более высокой степенью
аппроксимации
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h2

2
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H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150,
262, (1990)

Можно разделять произвольное количество операторов. Если
, то

Разделённые уравнения необязательно обладают теми же свойствами, что и
исходное. Например, могут сохранять не все моменты функции распределения

Численные методы интегрирования
одномерного уравнения переноса

Это гиперболическое уравнение

Решается или задача Коши (заданы только начальные условия), или начально-
краевая задача (заданы ещё и краевые условия)

Главная сложность: высокочастотные осцилляции («изрезанность»). Их, однако,
можно сглаживать.

Пример появления высокочастотных осцилляций
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Классификация методов

Конечные разности

Спектральные (Фурье и Эрмита)

Конечные объёмы

Конечные элементы

Метод характеристик (полулагранжевый)

Лагранжевый

Интегрирование движения частиц (метод частиц в ячейках)

Метод конечных разностей

Функция аппроксимируется значениями в вершинах сетки

{xi}i=1…N

f n
i ≡ f(xi, t

n)



Производные аппроксимируются конечными разностями

Надо следить за:

Точностью вычислений
Стабильностью
Степенью численной диффузии

Простейшие конечно-разностные аппроксимации

Центрально взвешенная аппроксимация (предполагаем равномерную сетку с
шагом )

Аппроксимация «вверх по течению» (upwind)

Аппроксимация upwind 2-го порядка

Forward in time, centered in space (FTCS)

FTCS для гиперболических уравнений всегда неустойчив:
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Метод Лакса — Фридрихса (Lax – Friedrichs)

Метод устойчив, если выполняется условие Куранта 
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Метод имеет первый порядок точности по 

Метод «диффузионен»:

Метод Лакса — Вендрофа (Lax — Wendroff)

Можно рассматривать как трёхточечную схему по времени с промежуточной
точкой в момент времени 
Можно рассматривать как разновидность метода предиктор-корректора
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Метод устойчив, если выполняется условие Куранта 

Метод 2-го порядка точности и по , и по 

Метод обладает уменьшенной численной диффузией:

Метод, однако, нарушает принцип максимума:

если , то  и при
выполнении условия Куранта : 

Метод Upwind

Имеет первый порядок точности по  и 
Можно повысить порядок точности за счёт метода предиктор-корректора и
upwind-производных 2-го порядка
Метод не нарушает принцип максимума

Примеры
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Дома

Доказать

Доказать, что метод Лакса — Вендрофа устойчив при выполнении условия
Куранта

≈ + O(a3)
df(xi)

dx

3fi − 4fi−1 + fi−2

2a


