
Основы Julia

Почему Julia?

Язык разработан специально для научных вычислений

Богатый набор библиотек для обработки данных, численного моделирования и
создания изображений

Основан на открытых технологиях

Низкий порог входа

Удобный синтаксис

Легко писать эффективные с точки зрения скорости вычислений программы

Особенности Julia

Интерпретируемый язык со строгой динамической типизацией и встроенной JIT
(Just-In-Time) компиляцией

Интерпретируемый означает, что программы не требуют предварительной
компиляции, код можно выполнять по ходу его написания

Примеры: Matlab, Python vs C/C++/Fortran

Строгая типизация означает, что корректность передаваемого типа всегда
можно проверить без непосредственного исполнения программы

Примеры: Python vs C/C++/Fortran

Динамическая типизация означает, что тип определяется в процессе
выполнения, его явное указание не требуется, тип переменной можно
поменять

Примеры: Python vs C/C++/Fortran

JIT-компиляция означает, что в момент первого вызова функции она
компилируется с использованием преобразования в C-функцию при помощи
LLVM (Low Level Virtual Machine)

Примеры: numba в Python

Julia использует Multiple dispatch (множественная генерация методов функции):
одна и та же функция компилируется в разные методы в зависимости от
используемых типов данных

> function mult(x,y)
 x*y
 end
> mult(2, 3)
6
> mult(2.0, 3.0)
6.0
> mult([2, 3]', [1, 4])
14
> mult("H", "i")
"Hi"

Julia vs C/C++/Fortran

Julia проще: легче обучиться, более быстрая разработка, меньше кода

Сравнимая скорость работы программ

В Julia встроен автоматический сборщик мусора

Сложнее писать оптимизированный код

Сложно создавать скомпилированные в бинарный код приложения

Julia vs Matlab

Matlab платный, код закрыт

Язык Matlab заточен под обработку векторов и матриц, написание более общих
программ затруднено

На Matlab сложнее писать эффективные с точки зрения скорости программы

В Matlab более богатый выбор уже готовых для использования алгоритмов

У Julia нет сравнимой по удобству использования оболочки

Matlab значительно лучше документирован

Julia vs Python

На Python сложнее писать эффективные с точки зрения скорости программы

К Julia проще подключить библиотеку, написанную на C/C++

Python изначально разрабатывался не для научных вычислений

У Python значительно больше коммьюнити

На Python написано больше кода (но его можно легко подключать к Julia)

Недостатки Julia

Это молодой язык (первый релиз — 2012 год)

Относительно небольшое сообщество

Некоторые вещи или не написаны, или пока сырые (но есть обёртки над
практически всеми популярными библиотеками из других языков)

Часто скудная документация к библиотекам

Более сложная, чем в Python и Matlab система типов

Есть сложности с созданием скомпилированных программ

Установка Julia

С официального сайта: https://julialang.org/downloads/

Далее: juliaup

Под Linux не рекомендуется пользоваться пакетным менеджером (там обычно
старая версия)

https://julialang.org/downloads/

Под Windows рекомендую использовать WSL (Windows Subsystem for Linux)

Использование Julia

Из REPL

REPL (read, evaluate, print, repeat) — интерактивная оболочка, тут же
выполняющая всё, что вводится

$ julia

 _
 _ _ _(_)_ | Documentation:
https://docs.julialang.org
 (_) | (_) (_) |
 _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 1.11.1 (2024-10-16)
 _/ |__'_|_|_|__'_| | Official https://julialang.org/
release
|__/ |

julia>

Некоторые полезные комманды:
Ctrl-D — выйти из REPL
Ctrl-C — прервать выполнение команды
? — помощь
?<function> — документация к функции
; — вход в оболочку командной строки
Ctrl-L — очистить экран
Ctrl-R , Ctrl-S — поиск назад и вперёд по истории ввода

"Переменная" ans содержит значение, возвращённое предыдущей строкой

Другие способы использования Julia

Написание программы в файле (обычно с расширением .jl) и его запуск из
командной строки:

$ julia script.jl arg1 arg2

Из IDE (Integrated Development Environment)
Рекомендуемый редактор: Visual Studio Code и расширение Julia для него

Из интерактивных блокнотов Jupyter Notebook (требуется установка пакета
IJulia.jl)

Из интерактивных блокнотов Pluto (требуется установка пакета Pluto.jl)
Главное преимущество: реактивность (автоматическое обновление всех
зависимых блоков кода)

Управление пакетами

Используется специальный встроенный в язык менеджер пакетов Pkg

Менеджер вызывается нажатием] в Julia REPL

julia>
(@v1.11) pkg>

Основные комманды:
add PackageName — установить пакет
remove PackageName — удалить пакет
status — показать установленные пакеты и их версию
update — обновить пакеты до последней версии
activate <name of environment> — активировать окружение

activate . — активировать окружение уникальное для текущей папки
instantiate — установить все пакеты для данного окружения

(прописываются автоматически или вручную в Project.toml)
backspace или Ctrl-C — выйти из менеджера

Полезные пакеты

Plots.jl , Makie.jl — построение графиков

Interpolations.jl , SpecialFunctions.jl , LinearAlgebra.jl

CSV.jl , Tables.jl , DataFrames.jl — работа с данными в табличном виде

HDF5.jl , JLD2.jl — работа с данными в формате HDF (Hierarchical Data
Format)

DifferentialEquation.jl — решение (в основном обыкновенных)
дифференциальных уравнений

IJulia.jl — ядро Julia для Jupyter Notebook

FFTW.jl — обёртка над C-библиотекой fftw для быстрого преобразования
Фурье

Unitful.jl — типы для данных с единицами измерения

Основы программирования на Julia

Литература

Официальная документация:
https://docs.julialang.org/en/v1/

Обучающие материалы на официальном сайте: https://julialang.org/learning/

Подсказка по основным функциям: https://cheatsheet.juliadocs.org

Где искать помощь:
https://discourse.julialang.org
https://julialang.zulipchat.com
LLM

B. Lauwens, A. Downey. Think Julia: How to Think Like a Computer Scientist.
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
I. Balbaert, A. Salceanu. Discover Julia, a high-performance language for technical
computing. Packt Publishing. (2019)
T. Kwong. Hands-On Design Patterns and Best Practices with Julia. Packt Publishing.
(2020)

Дома

Установить Julia v1.11.4 https://julialang.org/downloads/
Установить Visual Studio Code https://code.visualstudio.com/ и расширение Julia
для него https://www.julia-vscode.org
Загрузить файл julia-basics.jl и построчно позапускать его в Visual Studio
Code
Написать функцию std_dev(x) , которая возвращает стандартное отклонение
для всех элементов вектора x :

https://docs.julialang.org/en/v1/
https://julialang.org/learning/
https://cheatsheet.juliadocs.org/
https://discourse.julialang.org/
https://julialang.zulipchat.com/
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://julialang.org/downloads/
https://code.visualstudio.com/
https://www.julia-vscode.org/

σ = (
n

∑
i=1

(xi − μ)
2)

μ =
n

∑
i=1

xi

1

n

1

2

1

n

