
Система контроля версий Git

Что такое система контроля версий

Хранит историю изменений

Позволяет разботать надо документом совместно

Позволяет создавать параллельные версии (ветки)

Предоставляет инструменты для слияния нескольких версий

Популярные системы версий

Git

Subversion (централизованная)

Mercurial (альтернатива Git)

Что такое Git

Создана Линусом Торвальдсом в 2005 году для разработки ядра Linux

Распределённая архитектура: каждый разработчик хранит полную копию
репозитория (и его историю)

Лёгкость создания веток

Все операции выполняются локально

Использование хеширования для хранения истории (невозможно переписать
без следа)

Изменения разбиваются на стадии, позволяет выбирать, что и когда добавлять
в историю

Преимущества Git

Гибкость: подходит и для маленьких, и для больших проектов

Повышенная сохранность проекта благодаря децентрализации

Мощные возможности для разрешения конфликтов редактирования

Множество онлайн-репозиториев, интегрированных с дополнительными
инструментами (код-ревью, автоматическая проверка кода, документация,
трекер ошибок и т. д.)

Большое сообщество

Недостатки Git

Сложная система разрешения конфликтов

Неудобно работать с нетекстовыми файлами (а также и с текстовыми,
содержащими много текста в строках)

Невозможно заблокировать файл от изменений

Нет автоматического добавления изменений в историю

Онлайн-репозитории Git

GitHub (https://github.com/)

GitLab (https://gitlab.com/)

Bitbucket (https://bitbucket.org/)

SourceForge (https://sourceforge.net/)

GitVerse (https://gitverse.ru/)

Введение в Git

https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://sourceforge.net/
https://gitverse.ru/

Определения

Проект располагается в репозитории

Репозиторий можно клонировать в другую папку или на другой компьютер,
один из клонов объявляется основным (origin)

При редактировании файла его статус изменяется на модифицированный

Модифицированные файлы можно проиндексировать (stage) для
дальнейшего добавления в историю

Проиндексированные файлы добавляются в историю посредством
фиксирования или коммита (commit)

Параллельные версии кода создаются путём ветвления (branching)

Различные ветки можно сливать (merge) друг с другом

Изменения из основного репозитория добавляются в локальный клон
командой Pull

Локальные изменения добавляются в основной репозиторий командой Push

Установка Git

https://git-scm.com

GitHub Desktop https://github.com/apps/desktop

VSCode по умолчанию поддерживает работу с git-репозиториями

Начало работы с Git

Проверка работы

> git --version

Первоначальная настройка

https://git-scm.com/
https://github.com/apps/desktop

> git config --global user.name "Artem K"
> git config --global user.email "test@mail.com"

Инициализация репозитория в текущей папке

> git init

Добавление файлов в репозиторий

Если создать файл в папке, оно не будет добавлен в репозиторий
автоматически

Проверка статуса репозитория

> git status

Индексирование нового файла

> git add <filename>

git add --all индексировать все новые файлы

Добавление проиндексированных файлов в историю:

> git commit -m "<message text>"

git commit -a объединяет индексирование новых файлов и коммит

Удаление файлов из репозитория

Удаление файла из индекса и с диска:

> git remove <filename>

git remove --cached удаляет файл только из индекса

git remove не удаляет историю файла из репозитория!

Работа с ветками

Пример:

Создали ветку для разработки новой функциональности или улучшения
старой
Где-то в существующем коде обнаружили ошибку
Создали новую ветку из основной, в ней поправили ошибку
Слили ветку с исправленной ошибкой и основную
Закончили работу над новой функциональностью и слили её с основной (с
предупреждением, что в основную ветку внесены изменения после
разделения)

Ветки легковесны и позволяют работать с разными версиями кода в одной и
той же папке

Создание веток

> git branch <branch-name>

> git branch
 <branch-name>
* main

Активирование ветки:

> git checkout <branch-name>

git checkout -b создаст ветку, если она ещё не существует

Слияние веток

> git checkout main
Switched to branch 'main'
> git merge <branch-name>
Updating 09f4acd..dfa79db
Fast-forward
 main.jl | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)
> git branch -d <branch-name>

Разрешение конфликтов

> git merge <branch-name>
Auto-merging main.jl
CONFLICT (content): Merge conflict in main.jl
Automatic merge failed; fix conflicts and then commit the
result.

> cat main.jl
<<<<<<< HEAD
using Plots
=======
using Makie
>>>>>>> new-feature-branch

Редактируем main.jl и добавляем его в индекс:

> git add main.jl

Использование GitHub в качестве основного
репозитория

Как создать новый репозиторий:
Регистрируемся на https://www.github.com/
Создаём репозиторий в веб-интерфейсе
Запускаем локально команду

> git clone https://github.com/korzhimanov/Lecture2025.jl.git

Как добавить существующий репозиторий на GitHub:

Создайте пустой репозиторий (без README.md и .gitignore , если они уже
существуют в вашем репозитории) с нужным именем на GitHub

Добавьте этот репозиторий, назвав его origin :

> git remote add origin https://github.com/korzhimanov/test.git

Загрузите свой код, установив репозиторий на GitHub в качестве основного

> git push --set-upstream origin main

Если выдаёт ошибку fatal: refusing to merge unrelated histories ,
сначала загрузите изменения с GitHub, разрешив объединение историй из двух
несвязанных репозиториев:

> git pull origin main --allow-unrelated-histories

Или принудительно перезапишите историю репозитория на GitHUb:

> git push --set-upstream origin main --force

https://www.github.com/

Обновление локального репозитория из основного

> git pull origin

> git fetch origin
> git log origin/main # посмотреть информацию о новых коммитах в
origin
> git diff origin/main # посмотреть разницу в файлах в локальном
main и origin
> git merge origin/main

Добавление локальных изменений в основной
репозиторий

> git pull origin # добавить новые изменения из основного
репозитория, разрешить конфликты
> git push origin # сработает только если в локальном
репозитории учтены все коммиты из основного репозитория

GitHub Pull Request

Это механизм взаимодействия с другими пользователями репозитория и
проверки ими вносимых в него изменений
Создаём новую ветку, вносим изменения в ней
Коммитим изменения и отправляем (push) их на GitHub
Открываем Pull Request (запрос на слияние)

Внесение изменений в чужие репозитории

Делаем fork (ответвление, но не путать с branch !) репозитория
Клонируем основной репозиторий

> git clone https://github.com/JuliaLang/julia.git

Мы не можем напрямую добавлять наши изменения в основной репозиторий,
поэтому переименовываем его:

> git remote rename origin upstream

Объявляем основным репозиторием наш форк:

> git remote add origin https://github.com/korzhimanov/julia.git

Редактируем локально и отправляем всё в наш форк:

> git push origin

Идём на GitHub и делаем Pull Request в основной репозиторий

Удобные настройки Git

.gitignore

Файл .gitignore позволяет настроить, что не надо коммитить в репозиторий

ignore ALL .log files
*.log

ignore ALL files in ANY directory named temp
temp/

https://github.com/github/gitignore

Настройка SSH

SSH (secure shell network) это популярный протокол защищённого доступа к
удалённой машине

Использует пару ключей: публичный и приватный

Публичный ключ лежит на удалённой машине и доступен для просмотра всем

Приватный ключ лежит локально и должен быть недоступен для просмотра
извне

Зная оба ключа, можно получить доступ к удалённой машине

Генерация приватного ключа:

> ssh-keygen -t rsa -b 4096 -C "test@mail.com"

id-rsa это приватный ключ
id-rsa.pub это публичный ключ

https://github.com/github/gitignore

Содержимое id-rsa.pub можно добавить на GitHub

Чтобы использовать SSH соединение в Git:

> git remote add origin git@github.com:korzhimanov/test.git

Или, если уже есть HTTPS соединение, его можно заменить на SSH:

> git remote set-url origin git@github.com:korzhimanov/test.git

Возврат к старой версии в Git

Находим старый коммит

> git log --oneline
52418f7 (HEAD -> master) Just a regular update, definitely no
accidents here...
9a9add8 (origin/master) Added .gitignore
81912ba Corrected spelling error

Просмотр старого коммита:
git show 81912ba покажет изменения, внесённые в результате этого

коммита
git diff 81912ba покажет разницу между этим коммитом и текущей

версией
git diff 81912ba 9a9add8 покажет разницу между двумя коммитами
git diff 81912ba 9a9add8 -- <filename> покажет разницу в

указанном файле

Отмена коммита:

> git revert 81912ba

Это создаст новый коммит, в котором будет удалено всё, что было внесено
коммитом 81912ba (возможно, потребуется разрешение конфликтов)

git revert 81912ba --no-edit создаст коммит с автоматическим
сообщением

git revert 81912ba --no-commit отменит коммит, но без создания нового
коммита

git revert HEAD отменяет последний коммит

git revert 81912ba..52418f7 удалит все коммиты с 81912ba по 52418f7

git restore . отменит все непроиндексированные изменения

git checkout -- . отменит все непроиндексированные изменения в уже
существоваших файлах (но не затронет новые)

git restore --staged . отменит все незакоммиченные изменения

git reset . отменит всю индексацию (но не откатит изменения)

git reset --hard отменит все изменения в существовавших файлах (но не
затронет новые)

git clean -fd удалит все непроиндексированные файлы и папки

Вместо . можно использовать имя файла или папки, тогда отмена будет
сделана только в этом файле или папке

git reset 81912ba откатит историю к коммиту 81912ba (но остальные
коммиты сохранятся и к ним можно будет вернуться, если требуется)

Литература
https://git-scm.com/doc
https://docs.github.com
https://gitverse.ru/docs/

Дома
Создать git-репозиторий в папке с файлом из предыдущей домашней работы
Зарегистрироваться на GitHub https://github.com
Создать репозиторий на GitHub и объединить его с локальным репозиторием
из 1-го пункта
Сделать форк репозитория https://github.com/korzhimanov/Lectures2025.jl
Создать его локальную копию
Создать в src подпапку со своей фамилией
Добавить файл с домашним заданием в эту подпапку
Загрузить обновлённый репозиторий на GitHub и создать Pull Request на его
объединение с основным репозиторием

https://git-scm.com/doc
https://docs.github.com/
https://gitverse.ru/docs/
https://github.com/
https://github.com/korzhimanov/Lectures2025.jl

