
Универсальные методы
интегрирования одномерного
уравнения переноса
Это методы, которые применимы к уравнениям в частных производных
произвольного типа:

Конечные разности
Спектральные (Фурье и Эрмита)
Конечные элементы

Метод конечных разностей рассмотрели на предыдущей лекции.

Спектральные методы

 не зависит явно от  — можно рассматривать уравнение как линейное

Идея: разложить по ортогональному набору функций (в спектр), тогда
дифференциальное уравнение в частных производных заменится
обыкновенным дифференциальным уравнением для образов

Можно обобщить и на нелинейный случай

Некоторые определения

Базисные (пробные) функции:

Ортонормированность

 — вес (часто равен единице)

+ v(x, t) = 0
∂f

∂t

∂f

∂x

v f

(ϕ0, … ,ϕN)

f(x, t) ≈ fN(x, t) =
N

∑
k=0

gkϕk

∫ ϕm(x)ϕn(x)w(x)dx = δmn

w(x)



Невязка

Тестовые функции

Метод Галёркина

Тестовые совпадают с базисными: 

Другими словами: невязка ортогональна базисным функциям

Псевдоспектральный метод (метод коллокаций)

, где  — N специальным образом подобранных точек
(точки коллокации)

Другими словами: невязка равна нулю в N точках:

Преобразование Фурье

Метод Галёркина

RN = + v(x, t)
∂fN

∂t

∂fN

∂x

(ψ0, … ,ψN)

∫ ψn(x)RN(x)dx = 0,  n ∈ 0 …N

ψn(x) ≡ ϕn(x)

∫ RN(x)ϕn(x)dx = 0,  n ∈ 0 …N

ψn(x) = δ(x − xn) xn

∫ RN(x)ψn(x)dx = ∫ RN(x)δ(x − xn)dx = RN(xn)

RN(xn) = 0,  n ∈ 0 …N

ϕn(x) = exp(in ),   − N ⩽ n ⩽ N ,  0 ⩽ x ⩽ L
1

√2πL

2πx
L

fN(x, t) =
N

∑
k=−N

gk(t) exp(ik )1

√2πL

2πx
L



Получаем ОДУ — решаем численно (например, методом Рунге — Кутты)

Предполагаются периодические граничные условия (но возможно усложнение
на другие случаи)

Фурье-образы  и/или  можно определять численно

Метод Галёркина сложно обобщить на случай нелинейных уравнений

Сложность вычисления свёртки — 

Псевдоспектральный метод Фурье

∫ RN(x)ϕn(x)dx = ∫ ( + v(x, t) ) exp(−in )dx = 0
1

√2πL

∂fN

∂t

∂fN

∂x

2πx

L

n ∈ −N …N

⇒ ġk(t)
∂fN

∂t

⇒ ik gk(t)
∂fN

∂x
2π
L

v(x, t) ⇒ uk(t)

v(x) ⇒ u ∗ g ≡
N

∑
k=−N

un−kik gk(t)
∂fN

∂x
2π
L

ġn(t) + i
N

∑
k=−N

un−kk gk(t) = 0,  n ∈ −N …N
2π

L

v(x, t) f(x, t = 0)

N 2

ϕn(x) = exp(in ),   − N ⩽ n ⩽ N ,  0 ⩽ x ⩽ L
1

√2πL

2πx

L

fN(x, t) =
N

∑
k=−N

gk(t) exp(ik )1

√2πL

2πx

L



Вместо вычисления свёртки со сложностью  — численное взятие Фурье-
образа со сложностью  (методом быстрого преобразования Фурье)

Псевдоспектральный метод легко обобщить на нелинейный случай

Для уравнений с постоянными коэффициентами при определённом
(оптимальном) выборе точек коллокации псевдоспектральный метод
идентичен методу Галёркина, в остальных случаях он даёт ту же точность

Преобразование Эрмита

Распределение по скоростям непериодично: применение Фурье-
преобразования «нефизично» (не сохраняет импульс)

Фурье-преобразование требует ограниченности: теряются «хвосты», не
сохраняется количество частиц

RN(xn) = 0,  xn = n ,  n = 0 …N
L

N

fn = fN (xn ≡ n )L

N

fn =
N

∑
k=−N

gk exp(ik )1

√2πL

2πn

N

=
N

∑
k=−N

(ik ) gk exp(ik )
∂fn
∂x

1

√2πL

2π
L

2πn
N

vn = v(xn ≡ n )L

N

RN(xn) = + vn = 0,  n = 0 …N
∂fn
∂t

∂fn
∂x

fm+1
n = fm

n −
N

∑
k=−N

(ik ) gk exp(ik ),  n = 0 …N
hvn

√2πL
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2πn
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Но есть хорошая альтернатива: преобразование Эрмита:

 — многочлены Эрмита (собственные функции квантового
гармонического осциллятора)

Нормированная и масштабированная базисная функция для преобразования
Эрмита:

Свойства базисной функции преобразования Эрмита

Свойства преобразования Эрмита

Ĥ {f(x)} (n) ≡ ∫ f(x)Hn(x)e−x2
dx

Hn(x)

ϕn(x) ≡
~
Hn(x) =√ Hn(αx)e−α2x2

,  α > 0
α

2nn!√π

αx
~
Hn(x) = √ ~

Hn+1(x) + √ ~
Hn−1(x)

n + 1
2

n

2

~
Hn(x) = −α√2(n + 1) ~

Hn+1(x)
d

dx

x
~
Hn(x) = −√(n + 1)(n + 2) ~

Hn+2(x) − (n + 1) ~
Hn(x)

d

dx

∫ ~
Hm(x) ~

Hn(x)w(x)dx = δmn

∫ ~
Hm(x) ~

Hn(x)w(x)dv = 2α(n + 1)δmn

d

dx

d

dx

w(x) ≡ exp(α2x2)

f(x, t) =
N

∑
n=0

gn(t) ~
Hn(x)

gn(t) = ∫ f(x, t) ~
Hnw(x)dx



Метод Галёркина

Но работает только если  можно считать постоянной в пространстве. При
наличии магнитного поля это, как правило, не так

Псевдоспектральный метод

Точки выбираем в соответствии с квадратурной формулой Гаусса — Эрмита:

Это удобно, поскольку следующее равенство выполняется точно для всех
многочленов степенью  и меньше (и является хорошим приближением в
остальных случаях):

где  — весовые коэффициенты, определяемые по следующей формуле:

Здесь  — так называемый многочлен Лагранжа — многочлен  степени
такой, что .

 можно вычислить по формуле:

f(x, t) =
N

∑
n=0

ġn(t) ~
Hn(x)

∂
∂t

f(x, t) = −α
N

∑
n=1

gn−1(t)√2n ~
Hn(x)

∂
∂x

ġ0 = 0

⋮

ġn = α√2nvgn−1

⋮

ġN = α√2nvgN−1

v

{ξk},  k = 0 …N ,  HN+1(ξk) = 0

2N − 1

∫ f(x)e−α2x2
dx =

N

∑
k=0

wkf ( )
ξk

α

wk

wk ≡ ∫ Lk(x)e−x2
dx

1
α

Lk(x) N + 1

Lk(ξm) = δkm

wk

wk =
1

∑N
m=0 [√ Hm (ξk)]

2
α

2mm!√π



Примечания

Эрмитово разложение хорошо работает для кинетики, близкой к равновесной

Возможно проведение перемасштабирования

Псевдоспектральный метод допускает обобщения на нелинейный случай

H̄n(x) =√ Hn(αx)e− α2x2
,  α > 0

α

2nn!√π

1
2

f(x, t) =
N

∑
k=0

gk(t)H̄n(x)

gk(t) =
N

∑
j=0

f ( , t) H̄k( )
ξj

α

ξj

α

1
Cj

Cj =
N

∑
k=0

[H̄k( )]
2

ξj

α

f ( , t) =
N

∑
k=0

gk(t)H̄
′
n(x)

∂
∂x

ξj

α

fj ≡ f ( , t)
ξj

α

F = {fj}

Ḟ = −vDF

D = {dij}

dij =
N−1

∑
k=1
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Спектральные методы требуют специального подхода при параллельном
выполнении

Спектральные методы могут сохранять число частиц и импульс, но обычно не
сохраняют энергию и не обеспечивают выполнение принципа максимума

Примеры

F{f} = F
−1 [ikvF(f)]

f
m+1
n = fm

n − hFn{fm}

f
m+1/2
n = fm

n − Fn{fm}
h

2

fm+1
n = fm

n − hFn{fm+1/2}



Увеличим время расчёта



Уменьшим временной шаг в 4 раза

Можно также вводить фильтрацию высоких частот, но чаще используют более
сложные (неявные) схемы для интегирования по времени

Метод конечных элементов



Для области моделирования вводится произвольная сетка (обычно
используется триангуляция)
Можно моделировать течения в сложных границах
Можно увеличивать разрешение сетки в нужных областях
Можно менять разрешение сетки (адаптировать) в ходе вычислений

Формально близок к спектральным, но используется разложение по локальным
функциям, в простейшем случае кусочно-линейным:

Конечными элементами называют как элементы сетки, так и базисные функции

Слабая форма уравнения

Запишем уравнение в дивергентной форме:

Это сильная (исходная) форма уравнения. Домножим на произвольную
функцию , равную нулю на границе и проинтегрируем:

Это слабая форма уравнения. Оно содержит все решения сильной формы, а
также множество негладких решений.

Свойства базисных функций

ϕn(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x ∈ [xk−1,xk]

x ∈ [xk,xk+1]

0 x ∉ [xk−1,xk+1]

x−xk−1

xk−xk−1

xk+1−x

xk+1−xk

+ = 0
∂f

∂t

∂(vf)

∂x

u(x)

∫
Ω
u(x) dx + ∫

Ω
u(x) dx = 0

∂f(x, t)

∂t

∂(v(x)f(x))

∂x

∫
Ω
u(x) dx − ∫

∂Ω
u(x)v(x)f(x)dx + ∫

Ω
v(x)f(x)dx = 0

∂f(x, t)

∂t

du(x)

dx

∫
Ω
(u(x) + v(x)f(x)) dx = 0

∂f(x, t)

∂t

du(x)

dx



Дискретизация

Примечания

Фактически, используется метод Галёркина

Можно использовать базисные функции, не равные нулю на границе элемента,
(разрывный метод Галёркина) — требуется вычисление потоков на границе
элементов

Базисные функции можно представлять как непересекающиеся суперпозиции
нескольких многочленов (например, Лежандра)

Точность можно увеличивать как уменьшением размера элемента, так и
увеличением степени многочлена

Метод конечных элементов удобен для построения универсальных решателей и
поэтому широко распространён в коммерческих продуктах. Пример проекта с

∫ ϕn(x)ϕk(x)dx =

⎧⎪⎪
⎨
⎪⎪⎩

(xk+1 − xk−1) n − k = 0

|xn − xk| |n − k| = 1

0 |n − k| > 1

1
3
1
6

∫ ϕ′
n(x)ϕk(x)dx =

⎧⎪⎪
⎨
⎪⎪⎩

1 n − k = 0

sign[n − k] |n − k| = 1

0 |n − k| > 1

1
2

f(x, t) = ∑ gk(t)ϕk(x)

v(x)f(x, t) = ∑uk(t)ϕk(x)

∫
Ω
(ϕn(x) + v(x)f(x, t)) dx = 0

∂f(x, t)

∂t

dϕn(x)

dx

∑ ġk ∫ ϕnϕkdx +∑uk ∫ ϕ′
nϕkdx = 0

Âġ = B̂u



открытым кодом: FEniCS (https://fenicsproject.org). Недостаток:
специализированный решатель можно сильнее оптимизировать
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Дома
Доказать основные свойства функций Эрмита

Реализовать методы Лакса — Вендроффа и Upwind
Сравнить их работу для одномерного уравнения переноса с постоянной
скоростью

https://fenicsproject.org/

