
Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib

Метод конечных объёмов

Универсальный метод для решения уравнений в дивергентной форме (в форме
закона сохранения)

Поток:

Дискретизация

Пусть задана сетка:

Каждая точка сетки окружается контрольными (конечными) объёмами

Функция аппроксимируется средними по этим объёмам

Базовая идея метода
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Интегрируем по каждому контрольному объёму:

И пользуемся теоремой Остроградского — Гаусса:

Схема Годунова

Интегрируем по времени

Используем решение (точное или численное) так называемой задачи Римана

Задача Римана

Задача Римана — задача об эволюции разрыва
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Свойства решения задачи Римана:

В простейшем случае (кусочно-константная апроксимация):

Примечания

Достоинства

Точно выполняется закон сохранения числа частиц
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Выполняется принцип максимума

Вся «физика» — в задаче Римана

Недостатки

Схема первого порядка точности

Схема чрезмерно диффузна (резкие границы размываются со временем)

Требует наложения условия Куранта: 

Увеличение точности схемы

Вместо кусочно-константной можно использовать аппроксимацию более
высокого порядка, например, кусочно-линейную центрально-взвешенную
схему

Проблема: Все схемы Годунова более высокого порядка, чем первый, не
обеспечивают сохранение монотонности

Сохранение монотонности

Схема сохраняет монотонность, если для любой возрастающей (убывающей)
 так же возрастает (убывает).

Можно показать [Harten, J. Comput. Phys., 49, 357 (1983)], что схема сохраняет
монотонность тогда и только тогда, когда она обеспечивает убывание полной

Δt ≤ Δx/v

ΦRiemann(fi−1, fi) ≈ Φ( ) = v
fi + fi−1

2

fi + fi−1

2

{f n
i } ⟹ {f

n+1
i }



вариации (Total variation diminishing, TVD)

Полной вариацией называется величина

Или в дискретном случае

Схема обеспечивает убывание полной вариации, если

Для обеспечения TVD вводят ограничители потока (или наклона)

Ограничители потока

Идея: использовать схему высокого порядка там, где функция гладкая, и схему
первого порядка там, где функция терпит скачки

Ограничители потока, обеспечивающие TVD

Чтобы ограничитель потока обеспечивал убывание полной вариации, он
должен удовлетворять следующим условиям:
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Симметричный ограничитель:

Примеры

ван Леера [Van Leer, J. Comput. Phys., 14 (4), 361 (1974)]

монотонизированная центрально-взвешенная схема [Van Leer, J. Comput. Phys.,
23 (3), 263 (1977)]

minmod [Roe, Annu. Rev. Fluid Mech., 18, 337 (1986)]

Другие ограничители потока

См. https://en.wikipedia.org/wiki/Flux_limiter

Примечания

Ограничители потока дополнительно могут обеспечивать выполнение приципа
максимума
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Можно обобщить на аппроксимации более высокого порядка

Универсального ограничителя не существует

Полулагранжевый метод

Semi-Lagrangian (SL)

Специфичен для гиперболических уравнений первого порядка

Задействует метод характеристик (другими словами, лагранжево
представление)

Классическая реализация
Cheng, Knorr, J. Comput. Phys. 22, 330 (1976)

Вводим сетку

+ A(x, t) ⋅ ∇xf = 0
∂f

∂t

= A(X, t)
dX

dt

X(t = s) = x

→X = →X(t; →x, s)

f(X(t), t) = + ⋅ ∇Xf ≡ + A(X, t) ⋅ ∇Xf = 0
d

dt

∂f

∂t

dX

dt

∂f

∂t

f(X(t; x, s), t) = f(X(s; x, s), s) = f(x, s)

+ v(x, t) = 0
∂f

∂t

∂f

∂x

{xi}i=1…N



Находим, в какой точке  стартовала характеристика, пересекающая точку 
в момент времени 

Используем любую удобную интерполяцию, чтобы определить значение
функции в точке  в момент времени , и пользуемся равенством

Интерполяция

Линейная интерполяция — чрезмерно диффузна

Классический и самый распространённый вариант: кубические B-сплайны

Кубический B-сплайн — это кусочно-заданная функция, составленная из
полиномов третьей степени, всюду непрерывная вместе c первой и второй
производными

Коэффициенты  находятся из условия

Это система линейных алгебраических уравнений (N+1)-го порядка

Примечания

Достоинства
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Легко обобщается на многомерный случай [Sonnendrücker et al., J. Comp. Phys.
149, 201 (1999)]

Для второго порядка точности по времени требуется или предиктор-корректор,
или сохранение значений  (там же)

Условие Куранта заменяется на обычно более слабое  (если 
не зависит явно от  — шаг по времени может быть произвольным (!))

Метод сохраняет число частиц и импульс

Недостатки

Не гарантирует сохранение принципа максимума (зависит от интерполяции)

Построение сплайна вычислительно затратно (нелокальная операция)

Консервативный полулагранжевый метод

Positivity Flux Conservative (PFC) [Filbet et al., J. Comp. Phys. 172, 166 (2001)]

Объединяет метод конечных объёмов и полулагранжев метод:

Здесь  — результат решения уравнения для характеристики

При введении ограничителей потока схема обеспечивает выполнение
принципа максимума и убывание полной вариации даже при использовании
локальной интерполяции
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Метод конечных объёмов
R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University
Press. (2004)

Полулагранжевый метод
Eric Sonnendrücker. Numerical methods for the Vlasov equations. Lecture notes.
2013.
G. Dimarco, L. Pareschi. Numerical methods for kinetic equations. Acta Numerica,
Cambridge University Press (CUP), 2014, pp. 369-520.

Кубические B-сплайны
W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Numerical Recipes:
The Art of Scientific Computing. 2007

Дома
Для трёх рассмотренных ограничителей потока выписать в явном виде 
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